

BASIC Keywords
for the Apple Ill

BASIC Keywords
for the Apple Ill

A Wiley Press Book

John Wiley & Sons, Inc.

Eddie Adamis

New York • Chichester • Brisbane • Toronto • Singapore

Copyright© 1984 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107
or 108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawfuL Requests for permission or further information should be addressed to the
Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Adamis, Eddie, 1921 -

Basic keywords for the APPLE IlL

Includes index.

1. Apple Ill (Computer)- Programming. 2. Basic

(Computer program language) I. Title.
QA76.8.A663A3 1983 001 .64'2 83-12327

ISBN 0-471-88389-1

Printed in the United States of America

84 85 10 9 8 7 6 5 4 3 2

Foreword by Jean-Louis Gassee vii

Preface ix

Syntax Notation xi

BASIC Keywords for the Apple Ill 1

Index of Symbols 139

Index of Keywords by Function 141

v

Contents

Foreword

Eddie Adamis has, in my view, fulfilled the dearest wishes of the founders
of Apple: To open the world of personal computing to the nonspecialist.
He has, in fact, a talent that is all too rare: the ability to take something
considered obscure-and even a little frightening-and make it clear
and simple.

The author's history highlights the source of this talent. He came to
personal computing by the most improbable route: composer, music
arranger, Managing Director of United Artists Music and Records
(France) for fourteen years. His passion for personal computing started
when he was fifty. His acquisition of skill and enthusiasm has not dulled
his memory; he writes now as he wishes others had written for him when
he was just learning.

BASIC Keywords for the Apple /II explores progressively and thoroughly
the Business BASIC language of the Apple Ill. Each instruction is
described, with its variations, through clear and precise examples.

Eddie Adamis brings two important extras to technical manuals:

• his own viewpoint-not having been involved with the development of
the language, Eddie Adamis approaches Business BASIC with a
fresh eye;

• not being a computer man by trade, he writes for other nonspecialists
who want to use the personal computer for their own businesses,
with a sympathy that is obvious from his attention to detail in making
everything simple.

By now, everyone will have gathered that I highly recommend this book.

Eddie Adamis will make your Apple Ill and Business BASIC even better.

Jean-Louis Gassee
President, Apple Computer France

vii

Preface

Since its creation in the 1960s at Dartmouth College by John G. Kemeny
and Thomas E. Kurtz, the popularity of the BASIC language has never
stopped growing. This is, first, because BASIC is easy to learn and
understand and, second, because its flexibility and power are such that it
has given birth to numerous "extensions" specifically designed for
particular systems.

This book is organized in the form of a dictionary, which allows the reader
to refer quickly to the instructions, commands, operators, and symbols
of Business BASIC for the Apple Ill. The keywords, all the symbols and
operators, are presented one to a page. Each presentation provides:

• the meaning of the keyword

• its working principle

• a guideline for its use

• a program example

• the results of the executed program

and practical comments on the keyword, its use, difficulties, and the like.

The book is written in the clearest and most concise way possible,
with a consistent visual presentation, to provide an introduction to and a
tutorial in BASIC programming in general. Reading it does not require any
specialized knowledge. I have deliberately avoided filling the text with
heavy technical explanations specific to the system, with the idea that
the interested reader will be able to refer to the relevant manuals
and/or user's guides to the Apple Ill.

ix

Syntax Notation

Business BASIC keywords are written in uppercase letters.

Example: CLEAR
t

Keywords,

Example: CHAIN pathname [, line number]
t

delimiters (punctuation marks),

Example: CHAIN pathname [,line number]
t

and special characters appended to keywords and/or variable names

Example: LEFT$
LIST&
AREA%

t
must be typed exactly as shown.

Information that you must fill in is represented in lowercase letters
in italics.

Example: CHAIN pathname [,line number]
t t

Format descriptions may consist of one or more compound elements.

Symbols used to describe compound elements syntax are:

to separate alternative elements;

Example: CREATE pathname, CATALOG I TEXT I DATA

t t
[] to enclose optional elements;

Example: CHAIN pathname [,line number]
t t

{ } to enclose repeatable elements that must occur at least once.

Example: INPUT] variable {, variable}

t t
The above symbols must not be typed in. They are used only to set off
the elements that are alternative, optional, and repeatable.

xi

BASIC Keywords
for the Apple Ill

ABS stands for ABSOLUTE

TYPE Numeric function

FORMAT ABS (arithmetic expression)

ACTION Returns the absolute value of a numeric expression.

EXAMPLE

NOTES

The absolute value of a number is always positive or zero. A negative
value is converted to the equivalent positive value.

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to
all numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this
sets limits on the accuracy of the results returned by numeric functions.

1. arithmetic expression can be a numeric constant;

PRINT ABS (0)
PRINT ABS (1 0)
PRINT ABS (-10)

2. a numeric variable;

A = -25.65 : PRINT ABS (A)
B = 30.36 - 40 : PRINT ABS (B)

3. an arithmetic operation;

PRINT 10 + ABS (-20.36)
PRINT ABS (- 12 *6)

4. any valid combination thereof.

A = -25.65: B = 30.36- 40
PRINT 10 + ABS (A+ B + (-12 * 6))

Returns 0
Returns 10
Returns 10

Returns 25.65
Returns 9.64

Returns 30.26
Returns 72

Returns 117.29

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR
CONV, CONV%, CONV&, CONV$
DEF FN

ADDITION

TYPE Arithmetic operator

FORMAT numeric expression 1 + numeric expression2

ACTION Performs arithmetic addition.

EXAMPLE

NOTES

1. numeric expression can be a numeric constant;

PRINT 20 + 15
PRINT 20 + 10 + 5
PRINT 20 + (- 25)

2. a numeric variable;

A = 20 : B = 15 : C = 1 0 : D = 5 : E = - 25
PRINT A+ B
PRINT A+ C + D
PRINT A+ E

3. any valid combination thereof.

A = 20 : B = 15 : C = 1 0 : D = 5 : E = -25
PRINT A+ 10 + D
PRINT 20 + C + D
PRINT A+ E

• Business BASIC has 9 arithmetic operators:

+ Unary plus

*

I
MOD

Unary minus
Exponentiation
Multiplication
Floating-point division
Modulo division

DIV Integer division
+ Addition

Subtraction

2

symbol+

Returns 35
Returns 35
Returns -5

Returns 35
Returns 35
Returns - 5

Returns 35
Returns 35
Returns - 5

AMPERSAND symbol &

TYPE Identifier

FORMAT variable name&

ACTION Identifies the variable as being of the long integer type.

EXAMPLE

NOTES

Variables have identifiers attached to specify which type of value they
represent. A variable without an identifier is automatically of the
single-precision type.

Sales&
TOTAL.SALES.1983&
Number.of.ltems&

• Variable names must always begin with a letter. You can have from
0 (zero) to 63 additional characters after the first letter. The additional
characters can only be letters, digits, or periods. Long integer variables
may not be mixed in arithmetic expressions with regular integers or
reals. In variable names, lowercase letters are considered equivalent
to their uppercase counterparts.

• A long integer is any positive or negative whole number without
a decimal point. It has eight or more digits (up to 19). Its value is within
the range from -9223372036854775808 to 9223372036854775807.
A value greater than 9223372036854775807 would cause the
?OVERFLOW ERROR message to be displayed.

• Business BASIC has three identifiers attached to variable names:

& For variables of the long integer type
% For variables of the integer type
$ For variables of the string type

3

AND

TYPE Logical operator

FORMAT condition1 AND condition2

ACTION Connects two or more conditions.

EXAMPLE

RESULT

The expression evaluates as true (non-zero) if both conditions are true;
otherwise, it evaluates as false (zero). The result of the evaluation is
then usually used in conditional statements, such as IF .. . THEN
statements, to make a decision regarding program flow.

10
20
30

40
50
60
70

80
90

A = 1 0 : B = 50 : C = 1 00
IF A < B AND C > B THEN 40
PRINT "THE RESULT OF THE EVALUATION IS FALSE" :
END
PRINT "BOTH OF THE CONDITIONS HAVE BEEN MET"
A$= "/\' : B$ = "B" : C$ = "C"
IF A$ < > B$ AND C$ < > B$ THEN 80
PRINT "THE RESULT OF THE EVALUATION IS FALSE" :
END
PRINT "BOTH OF THE CONDITIONS HAVE BEEN MET"
END

Line 40: Both of the conditions have been met: A is less than B and C is
greater than B; the message on line 40 is printed.

NOTES

80: Both of the conditions have been met: A is different from B and C is
different from B; the message on line 80 is printed.

• The strings are compared character by character, from left to right,
on the basis of their ASCII code numbers. The first character found in
one string that has a greater ASCII value than the character found
in the same position in the second string makes the first string greater.
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has three logical operators:

AND Conjunction
OR Inclusive disjunction
NOT Negation (logical complement)

4

ASC stands for ASCII

TYPE String function

FORMAT ASC (string expression)

ACTION Returns the ASCII numeric code for the first character of a string
expression.

EXAMPLE

NOTES

1. string expression can be a string constant (literal);

PRINT ASC ('~')
PRINT ASC (':A-DAM")

2. a string variable;

A$ = ·~· : B$ = ':A-DAM"
PRINT ASC (A$)
PRINT ASC (B$)

3. a substring function;

A$ = ':A-DAM"
PRINT ASC (LEFT$(A$, 1))

4. any valid combination thereof.

A$ = " AFTERNOON"
PRINT ASC {MID$("GOOD" + A$,6,1))

• 65 is the ASCII numeric code for a capital A.

Returns 65
Returns 65

Returns 65
Returns 65

Returns 65

Returns 65

• ASCII stands for American Standard Code for Information Interchange.

• The number of characters in a string expression may range
from 0 (zero) to 255.

• A null string is a string that contains no characters.

• A string variable is identified by a dollar sign ($).

• The CHR$ function is the inverse of the ASC function. It converts the
ASCII code to a character.

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

5

AS EXTENSION

TYPE File clause

FORMAT OPEN# file number AS EXTENSION, file name

ACTION Appends information at the end of a file.

EXAMPLE

RESULT

With an AS EXTENSION clause, PRINT# or WRITE# statements write
additional information beginning at the end of the open file, thus allowing
the user to retain information previously saved in the file. The first
access begins at the end of the existing file. Each subsequent access
begins where the last one left off.

10 OPEN#1 AS EXTENSION, Accounting
20 FOR X = 60000 TO 60100
30 PRINT#1; ':A-ccount number ";X
40 PRINT#1;" Pending"
50 NEXT X
60 CLOSE#1
70 END

Line 10: Opens file #1 with the AS EXTENSION clause.

20: Sets up a loop to repeat 1 00 times.

NOTES

30: Prints the heading ':A-ccount number" followed by the value of X.

40: Prints the message.

50: Repeats from line 20.

60: Closes file #1.

• The comma that is usually placed after the file reference number in
a regular OPEN# statement is moved to the right of the clause.

• Business BASIC has three file clauses: AS INPUT, AS OUTPUT,
AS EXTENSION.

6

AS INPUT

TYPE File clause

FORMAT OPEN# file number AS INPUT, file name

ACTION Specifies that the opened file is a read-only file.

EXAMPLE

RESULT

10 REM ***Displaying with an INPUT# statement
20 REM *** the contents of a sequential text file
30 ST$ = "Sequential Text"
40 OPEN#1 AS INPUT,ST$
50 ON EOF#1 GOTO 100
60 INPUT#1 ; L$
70 PRINT#1 L$
80 GOTO 40
90 CLOSE#1

100 END

Line 10-20: Remarks to document program.

NOTES

30: Assigns a file name to the string variable ST$.

40: Opens the named file as a read-only file and assigns to it # 1 as its
reference number.

50: Branches unconditionally to line 100 when the end-of-file marker is
reached. (EOF is a reserved variable that stands for end of file.)

60: Reads a line of text and assigns it to the string variable L$.

70: Displays the line on the screen. The numeric value of X, which was
previously converted to a string, will, this time, be converted back to
a numeric value and displayed with a space in front of it, as usual
for any positive numeric expression.

80: Branches back to line 40. INPUT# and PRINT# will keep on reading
and writing, respectively, until the end of the file is reached.

90: Closes file #1.

• You cannot write to a file after the AS INPUT option has been
executed.

• Business BASIC has three file clauses: AS INPUT, AS OUTPUT,
AS EXTENSION.

7

AS OUTPUT

TYPE File clause

FORMAT OPEN# file number AS OUTPUT, file name

ACTION Specifies that the opened file is a write-only file.

EXAMPLE

RESULT

10 REM ***Writing with a PRINT# statement both string and numeric
20 REM *** values into a sequential text file
30 ST$ = "Sequential Text"
40 OPEN#1 AS OUTPUT,ST$
50 FOR X = 1 TO 10
60 PRINT#1; "Text line number ";X
70 NEXT X
80 CLOSE#1
90 END

Line 10-20: Remarks to document program.

NOTES

30: Assigns a file name to the string variable ST$.

40: Opens the named file as a write-only file and assigns to it #1 as its
reference number.

50: Sets up a loop to execute 10 times.

60: Writes to the file the string 'Text line number" followed by the numeric
value of X (1 through 1 0) automatically converted to a string. These
two strings, concatenated because of the semicolon, will occupy one
line of text in the file.

70: Branches back to line 50 (loop to execute 10 times).

80: Closes file #1.

• You cannot read from a file after the AS OUTPUT option has been
executed.

• Business BASIC has three file clauses: AS INPUT, AS OUTPUT,
AS EXTENSION.

8

ASSIGNMENT symbol

TYPE Operator

FORMAT variable I reserved variable = value

ACTION Assigns value to the variable specified by variable name.

EXAMPLE

RESULT

10 A= 10
20 B a:: A+ 10
30 C = (A * B)/2
40 L$ = "THE BASIC LANGUAGE"
50 PRINT A,B,C,L$
60 END

Line 10: Variable A is assigned the value 10.

NOTES

20: Variable B is assigned the result of the addition.

30: Variable C is assigned the result of the mathematical operation.

40: Variable L$ is assigned the string THE BASIC LANGUAGE.

50: The four variables' values are printed out.

• The keyword LET is optional.

Example: LET variable name = value

and

variable name = value

are equivalent statements.

Although variable name = value looks like a relational expression,
it is interpreted by Business BASIC as an assignment statement,
and has no logical value.

9

ATN stands for ARC TANGENT

TYPE Numeric function

FORMAT ATN (arithmetic expression)

ACTION Returns the arc tangent of arithmetic expression.

EXAMPLE

RESULT

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expresssion. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this
sets limits on the accuracy of the results returned by numeric functions.

10 REM *** OS = Side opposite to angle A
20 REM *** AS = Side adjacent to angle A
30 REM *** A = Angle of a right triangle
40 OS = 6 : AS = 8
50 R = OS/AS: PRINT R
60 A = ATN (R) : PRINT A
70 END

Line 10-30: Remarks to document program.

40: Assigns values to variables.

NOTES

50: Prints the result: .75.

60: Prints the result: .643501109.

• Tangent is the opposite of arc tangent. TAN (A) = OS/ AS. The ATN
function returns the angle whose tangent is arithmetic expression.
The result is a value expressed in radians.

• Conversions:
Radian = Degree I 57.29577951
Degree = Radian * 57.29577951

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic :
conversion :
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR,
CONV, CONV%, CONV&, CONV$
DEF FN

10

CATALOG

TYPE File statement

FORMAT CAT[ALOG]

ACTION Displays a listing (names of all files) of a root directory or subdirectory
specified by either a volume name or a subdirectory.

EXAMPLE

NOTES

A listing of a root directory or subdirectory displayed by CA T[ALOG]
specifies for each listed file: the size (number of blocks); the date and
time of modification, the EOF standing for end of file, and the type
of the file.

CATALOG
CATALOG /Memories
CATALOG /Memories/Part. One
CATALOG/D1

• CATALOG may optionally be abbreviated as CAT.

• The file types are:

BASIC BASIC program created with the SAVE command
BINARY Assembly language
CAT Root directory or subdirectory
DATA BASIC data
FONT Binary information about a character set
FOTO Data representing a picture
PASCOD Pascal code
PASDTA
PASTXT
RESERV
TEXT
UNKNWN

Pascal data
Pascal text
Reserved for future types
BASIC text
Stands for unknown; BASIC data or text file opened
but not written to

11

CHAIN

TYPE File statement

FORMAT CHAIN pathname [, line number]

ACTION Loads and runs one or more specified programs.

EXAMPLE

RESULT

When a program is too large (that is, when it requires more memory than
is available), it may be split into sections and saved on disk. Then
automatic execution of each section of the original program is performed
with the CHAIN statement.

10 REM *** Accounting.Section.One
20 X= 100
30 PRINT X
40 CHAIN ".02/Accounting.Section.Two"

10 REM *** Accounting.Section.Two
20 X=X+100
30 PRINT X: END
40 X= X+ 1000
50 PRINT X
60 END

After LOADing into the conputer's memory and RUNning
Accounting.Section.One, program execution proceeds as follows:

Line 30: PRINT displays the assigned value to variable X at line 30, that
is, 100.

NOTES

40: CHAIN loads and runs Accounting .Section.Two

50: PRINT displays the new computed value of variable X, that is,
200 (X = X + 100).

• The values of the variables left over from the previous program are
not cleared.

• If an error is made, the following messages are displayed:
?FILE NOT FOUND ERROR, if the specified program in the
CHAIN statement does not exist; ?REDIM ERROR, if the chained
program dimensions an array that was dimensioned in the
previous program.

12

CH R$ stands for CHARACTER

TYPE String function

FORMAT CHR$ (arithmetic expression)

ACTION Converts an ASCII numeric code to its character equivalent.

EXAMPLE

NOTES

ASCII stands for American Standard Code for Information Interchange.
ASCII codes make up a table of standard numerical equivalents for a
standard set of characters, called ASCII characters. ASCII characters
include uppercase and lowercase letters, numbers, and special control
and graphics characters. arithmetic expression is treated as an ASCII
code (in decimal) and must be in the range from 0 (zero) to 255.

1. arithmetic expression can be a numeric constant;

PRINT CHR$ (65)
PRINT CHR$ (30 + 35)

2. a numeric variable;

A = 65 : B = 30 : C = 35
PRINT CHR$ (A)
PRINT CHR$ (B + C)

3. any valid combination thereof.

A= 2: B = 10
PRINT CHR$ (A • 2 + B * 6 + 1)

Returns A
Returns A

Returns A
Returns A

Returns A

• If arithmetic expression is of the real type, Business BASIC will
convert it to an integer.

• The ASCII numeric code for a capital A is 65.

• The ASC function is the inverse of the CHR$ function. It converts
a character back to its ASCII code.

• Business BASIC has 12 string or string-related functions: ASC,
CHR$, HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$,
TEN, VAL.

13

CLEAR

TYPE Statement

FORMAT CLEAR

ACTION Sets all numeric variables to 0 (zero) and all string variables to null.

EXAMPLE

RESULT

10 A = 5 + 5 : B = 5 * 5 : A$ = "Before the CLEAR statement"
20 PRINT A,B
30 PRINT A$
40 CLEAR
50 PRINT A,B
60 PRINT A$
70 END

Line 10: Assigns values to variables A and B, and string variable A$.

NOTES

20: Prints the values of A and B: 10 25.

30: Prints the value of A$: Before the CLEAR statement.

40: Sets the variables A and B to zero and the string variable to null.

50: Prints the values of A and B: ¢ ¢.

60: Prints the value of A$:

The result of line 60 is a blank line since a null string represents
"no characters" and not a particular value.

• If you want to "zero out" specific variables, use specific assignment
statements rather than the CLEAR statement to avoid affecting the
whole program.

Example: A=~: A$= ""

• The number of characters in a string expression may range
from 0 (zero) to 255.

• A string variable is identified by a dollar sign ($).

14

CLOSE

TYPE File statement

FORMAT CLOSE

ACTION Causes all open devices and files to be closed.

EXAMPLE

NOTES

A CLOSE statement with no file number specified causes all devices and
files that have been opened to be closed. Closed files and devices
must be reopened before they can be accessed again. The same or a
different file number may be used.

10 OPEN#1, "Customers"
20 OPEN#3, "Statistics"
30 OPEN#5, ".Printer"

I
70 CLOSE
80 END

• CLOSE must always precede the END statement.

• All open files are closed when a LOAD, CLEAR, NEW, or RUN
statement is executed. The CHAIN statement does not close any files.

15

CLOSE#

TYPE File statement

FORMAT CLOSE# file number

ACTION Closes the file whose reference number is specified after the number sign.

EXAMPLE

NOTES

Closed files and devices must be reopened before they can be accessed
again. The same or a different file number may be used.

10 OPEN#1 , "Customers"
20 OPEN#3, "Statistics"
30 OPEN#S, ".Printer"

I
70 CLOSE#1
80 CLOSE#3
90 CLOSE#S

100 END

• CLOSE# must always precede the END statement.

• All open files are closed when a LOAD, CLEAR, NEW, or RUN
statement is executed. The CHAIN statement does not close any files.

16

COLON symbol •

TYPE Delimiter

FORMAT statement {: statement}

ACTION Separates statements in a list of statements or multiple statements
written on the same line.

EXAMPLE

RESULT

NOTES

1. A = 1 : B = 2 : C = 3 : PRINT A,B,C

2. A$ = "AB" : B$ = "CD" : C$ = "EF" : PRINT A$ + B$ + C$

3. FOR X = 1 TO 3 : PRINT X : NEXT X

4. GOSUB 500 : GOSUB 750 : END

5. IF A = 1 THEN PRINT "WORKING" : GOSUB 1000 : PRINT "DONE"

1. Three assignment statements and one print statement on a single line.

2. Three assignment statements and one print statement on a single line.

3. A FOR ... NEXT loop on a single line.

4. Two unconditional transfers to subroutines and an END statement that
will be executed sequentially.

5. If A is not equal to 1, none of the statements in the list will be executed
and the program will pass on to the next line; if A = 1 is true, all
three statements in the list will be executed in turn.

• Putting more than one statement on a single line saves memory space
and speeds up program execution.

17

CONCATENATION symbol+

TYPE String operator

FORMAT string expression + string expression

ACTION Concatenates (joins together) two or more string expressions.

EXAMPLE

NOTES

1. string expression can be a string constant;

PRINT "GOOD" + " MORNING" Returns GOOD MORNING
PRINT "1234" + "567890" Returns 1234567890
PRINT ''/\' + "B" + "C" + "D" Returns ABCD

2. a string variable;

G$ ="GOOD": M$ ="MORNING"
PRINT G$ + M$ Returns GOOD MORNING

3. a substring function;

A$= ''ANOTHER"
PRINT MID$ (A$,2,3) Returns NOT

4. any valid combination thereof.

A$ = " AFTERNOON"
PRINT "GOOD" + A$ R~urnsGOODAFTERNOON

• A blank space is also a character. A blank space has been inserted
at the beginning of the strings: ''AFTERNOON" and "MORNING".

• The number of characters in a string expression may range from
0 (zero) to 255. A null string is a string that contains no characters.

Example: A$= ""

A null string is generally used to initialize string variables at the
beginning of a program.

18

CONT stands for CONTINUE

TYPE Statement

FORMAT CONT

ACTION Causes program execution to continue after a temporary break.

EXAMPLE

RESULT

Program execution is temporarily halted by pressing CTRL-C, after a
STOP or an END statement has been executed or an error has occurred.
CONT is used to resume at the point where the break happened.
Execution is resumed at the statement immediately following the STOP
or END statement. If a program is halted by an error, execution is resumed
with the statement in which the error occurred.

10 PRINT "THIS PROGRAM STARTS AT LINE NUMBER 10"
20 STOP : PRINT "EXECUTION CONTINUES WITH THIS PRINT

STATEMENT"

Line 10: Prints the string on the screen:

NOTES

THIS PROGRAM STARTS AT LINE NUMBER 10

20: The STOP statement temporarily halts program execution and
causes the following message to be displayed:

BREAK IN 20

(that is, in line 20).

Typing CONT on the keyboard and pressing the RETURN key cause
execution to continue with the next instruction following the STOP
statement at line 20.

20: Prints the string on the screen:

EXECUTION CONTINUES WITH THIS PRINT STATEMENT

• You cannot use the CONT command after you add or alter statements
in a program that has been halted by a STOP statement.

19

CONV

TYPE Numeric function

FORMAT CONV (string expression I arithmetic expression)

ACTION Evaluates the expression and returns a real value.

EXAMPLE

NOTES

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. If the argument is
a string, then string expression must be a numeric string. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this
sets limits on the accuracy of the results returned by numeric functions.

Print CONV (922337-203685)
Print CONV (9223378- 3036057)
Print CONV (" 123456")
Print CONV ("1234567")
Print CONV (" 1234567 .123")
Print CONV ("123.4567")

Returns 718652
Returns 6.18732E+ 06
Returns 123456
Returns 1.23457E+ 06
Returns 1.23457E+06
Returns 123.457

• The value may be assigned to a regular integer. The conversion from
real to integer is automatic in the latter case.

• If CONV is used with a string expression, the effect is the same as with
the VAL function.

Example:

X = VAL ("1234567.123") : PRINT CONV (X}

and

PRINT CONV (VAL("1234567.123"))

return the same value: 1.23457E+06.

• Beyond 6 digits, the value is expressed in exponential notation.

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion :
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, AND, SGN, SQR
CONV,CONV%,CONV&,CONV$
DEF FN

20

TYPE Numeric function

FORMAT CONV% (arithmetic expression)

ACTION Evaluates arithmetic expression and returns an integer value.

EXAMPLE

NOTES

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

PRINT CONV% (123.94)
PRINT CONV% (-123.94)

Returns 124
Returns - 124

• The returned integer value is rounded off to the nearest whole number.

• The percent sign(%) is an identifier that defines a function or a variable
name as being of the integer type.

• The returned value by CONV% must be within the range from -32768
to 32767. Exceeding this range causes the ?OVERFLOW ERROR
message to be displayed.

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR
CON\/, CONV%, CONV&, CONV$
DEF FN

21

CONV&

TYPE Numeric function

FORMAT CONV& (string expression I arithmetic expression)

ACTION Evaluates the expression and returns a long integer value.

EXAMPLE

RESULT

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. If the argument is
a string, then string expression must be a numeric string. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

10 PRINT CONV& (987654321 0987654321-1234567890123456789)
20 PRINT CONV& ("1234567.123")

Line 10: CONV& returns - 3416920397562346125

NOTES

20: CONV& converts the string expression into a numeric expression and
extracts the integer portion of the value : 1234567 (no rounding off) .

• The ampersand(&) is an identifier that defines a function or a variable
name as being of the long integer type.

• The value returned by the CONV& function must be within the range
from - 9223372036854775808 to 9223372036854775807. Exceeding
this range would cause the ?OVERFLOW ERROR message to be
displayed.

• If the expression is a string, the effect is the same as using the VAL
function followed by CONV&.

Example: X = VAL ("1234567.123") : PRINT CONV& (X)

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined :

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, AND, SGN, SQR
CON\/, CONV%, CONV&, CONV$
DEF FN

22

CONV$

TYPE Numeric function

FORMAT CONV$ (arithmetic expression)

ACTION Evaluates arithmetic expression and returns a string value.

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

EXAMPLE

RESULT

NOTES

10 A = 10203 : B = 20304: T$ = CONV$ (A+ B)
20 PRINT LEN (T$)
30 PRINT LEFT$ (T$, 1)
40 PRINT MID$ (T$,2,3)
50 PRINT RIGHT$ (T$, 1)
60 END

Line 10: The evaluation of the numeric expression returns 30507. The numeric
value 30507 is then converted into a string expression and assigned
to the string variable T$.

20: PRINT LEN (T$) Returns 5

30: PRINT LEFT$ (T$, 1) Returns 3

40: PRINT MID$ (T$,2,3)

50: PRINT RIGHT$ (T$, 1)

Returns 050

Returns 7

• A dollar sign ($) is an identifier that defines a function or a variable
name as being of the string type.

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR
CONV, CONV%, CONV&, CONV$
DEF FN

23

COS stands for COSINE

TYPE Numeric function

FORMAT COS (arithmetic expression)

ACTION Returns the cosine of arithmetic expression.

EXAMPLE

RESULT

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

10 REM *** H = Hypotenuse of angle A

20 REM *** S = Side adjacent to angle A
30 REM *** A = Angle of a right triangle
40 FOR J = 1 TO 3
50 PRINT COS (J)
60 NEXT J
70 END

Line 10-30: Remarks to document program.

NOTES

40: Sets up a loop to repeat three times.

50: Prints the cosine of J:

.540302306 for J = 1 (radians)
-.416146836 for J = 2 (radians)
-.989992497 for J = 3 (radians)

60: Repeats from line 40.

• ARCCOS is the opposite of COS. COS (A) = S/H numeric expression
(expressed in Radians) is the angle whose cosine is to be calculated.

• Conversions:
Radian = Degree I 57.29577951
Degree = Radian * 57.29577951

• Business BASIC has 16 numeric functions in the following type

categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR

CONY, CONV%, CONV&, CONV$

DEF FN

24

CREATE

TYPE Statement

FORMAT CREATE pathname, CATALOG I TEXT I DATA [, arithmetic expression l

ACTION Creates root directories, subdirectories, text files, and data files.

EXAMPLE

COMMENTS

NOTES

Program files are created with the SAVE command. CATALOG, TEXT,
and DATA files are created with the CREATE statement. The type of a file
is determined at the time the file is created, either by assignment with
a CREATE statement or by the first access method used after creating the
file with a OPEN# statement.

10 CREATE "Memories/Part.One", TEXT, 4096

• pathname must be enclosed in quotation marks. Quotation marks may
be omitted only in immediate mode.

• The volume name and the local name must be preceded with a
slash (!).The slash may be omitted if the prefix has been set to
Memories. The complete pathname is thus assumed to be the
contents of the reserved variable PREFIX$ plus the partial pathname
as entered after CREATE.

• A comma must separate the pathname from the type of the file.

• A file record size defaults to 512 bytes. The record size is required
only for random-access files and must be specified by any positive
arithmetic expression following the file type.

• The type of file is specified by the following reserved words:

CATALOG
TEXT
DATA

For directories or subdirectories files
For text files
For data files

• To change the type of a file, you must first delete it a:nd then recreate it.

25

DATA

TYPE Statement

FORMAT DATA constant { [, constant] }

ACTION Contains constants that are accessed by one or more READ statements.

constant may be numeric (real, integer, or long integer), or alphanumeric
(string or literal).

EXAMPLE

RESULT

You can put as many constants in a list of constants as will fit on a line.
A OAT A statement is not executable by itself; a READ statement is used
to accept each data item and assign it sequentially to corresponding
variables. The variable type of the READ statement must match the
corresponding constant type in the OAT A statement. The information
contained in multiple OAT A statements is read as if it were one continuous
list. The READ statements access the OAT A statements in line number
order.

10 FORD = 1 TO 3
20 READ X
30 PRINT X
40 NEXT D
50 DATA 10, 20, 30

Line 10: Sets up a loop to repeat three times.

NOTES

20: Reads the next item in DATA list and assigns it to the variable X.

30: Prints X.

40: Repeats from line 10.

50: Contains three data items.

• String constants in OAT A statements do not need to be surrounded by
quotation marks unless the string contains commas, colons, or blanks.

• DATA statements may be placed anywhere in the program.

26

DEF FN stands for DEFINITION and FUNCTION

TYPE User-defined statement

FORMAT DEF FN function name (real variable) = arithmetic expression

ACTION Defines a user-created function.

real variable is a dummy variable used in arithmetic expression to define
a function. The resulting function can be used in other expressions or
statements when the function is called by its name.

EXAMPLE

10 DEF FNA (X) = INT (X * 100 + .5)/100
20 DEF FNB (X) = INT (X * 1000 + .5)/1000
30 M = 6.123456
40 PRINT FNA (M)
50 PRINT FNB (M)
60 END

RESULT

NOTES

Line 10: Definition of function A for rounding off to 2 decimals.

20: Definition of function 8 for rounding off to 3 decimals.

30: Assignment of the value 6.123456 to the variable M.

40: Prints the value M with 2 decimals (user-defined function FNA).

50: Prints the value M with 3 decimals (user-defined function FNB).

• The dummy variables (X in the example) serve to define the function.
By themselves they have no effect on the output value and do not
become reserved variables for the program as a whole.

• After the definition of the function, any numeric constant, numeric
variable, or arithmetic expression can be substituted for the "dummy
variables" in parentheses.

27

DEL stands for DELETE

TYPE Statement

FORMAT DEL line number1 [TO I, 1- line number2]

ACTION Deletes one or more specified program lines.

EXAMPLE

RESULT

NOTES

1. DEL 10

2. DEL 10- 50

3. DEL -50

4. DEL 50-

5. DEL 10, 50- 100

1. Deletes line 1 0.

2. Deletes all lines numbered from 10 to 50 inclusive.

3. Deletes all lines from the beginning of the program until line
50 inclusive.

4. Deletes all lines from line 50 to the end of the program.

5. Deletes line 10 and all lines numbered from 50 to 100 inclusive.

• To delete a single line, type the line number and press the RETURN or
ENTER key.

• The NEW command deletes the entire program.

28

DELETE

TYPE File statement

FORMAT DELETE pathname

ACTION Deletes a file from the disk.

EXAMPLE

RESULT

NOTES

The DELETE statement deletes local files, root directories, and subdirec­
tories. A subdirectory may be removed only if all files in that directory
have been deleted. If the last file in a root directory is deleted, the empty
root directory will still remain.

DELETE/Stock/Purchases/France

The file named France will be deleted, but the empty root directory named
Purchases will still remain.

• Errors that can occur with nonvalid DELETE statements are:

Cause
One or more files are open
Disk is write-protected
Nonexistent local file name
Nonexistent subdirectory
Nonexistent volume name
Specified file is locked }
Subdirectory contains files

29

Error Message
?FILES BUSY ERROR
?WRITE PROTECTED ERROR
?FILE NOT FOUND ERROR
?PATH NOT FOUND ERROR
?VOLUME NOT FOUND ERROR

?FILE LOCKED ERROR

Code
23
27
30
31
32

35

DIM stands for DIMENSION

TYPE Statement

FORMAT DIM variable name (subscripts) { [, variable (subscripts)] }

ACTION Allocates memory storage for arrays by setting the maximum values for
variable subscripts.

EXAMPLE

RESULT

An array is a set or matrix of variables identified by subscripts. subscripts
is a list of numeric expressions, separated by commas, which defines
the dimensions of the array. When executed, the DIM statement sets the
numeric array's elements to an initial value of 0 (zero) and the string
array's elements to an initial null value. An array variable can have more
than one subscript, defining a multidimensional array.

10 DIM AR (4, 3)
20 FOR X = 1 TO 4
30 FOR Y = 1 TO 3
40 READ AR (X,Y)
50 NEXT Y
60 NEXT X
70 DATA 1,2,3,4,5,6,7,8,9,10,11,12
80 END

Line 10: Specifies memory storage to be allocated to the 12 elements of

NOTES

array AR (4 x 3 = 12).

20: Sets up a loop for the 4 rows of the array.

30: Sets up a loop for the 3 columns of the array.

40: Reads and assigns the 12 values of the DATA statement to the
12 elements of the array.

50: Repeats from line 30.

60: Repeats from line 20.

70: Contains 12 data items.

• If an array variable name is not defined by a DIM statement, BASIC
automatically reserves a default size of 11 elements.

• A subscript's minimum value is always 0 (zero). DIM A(4) dimensions
a list with four elements: A(O), A(1), A(2), A(3).

30

DIV stands for INTEGER DIVISION

TYPE Arithmetic operator

FORMAT arithmetic expression 1 DIV arithmetic expression2

ACTION Evaluates the integer result of a division.

EXAMPLE

NOTES

A& = 7 : B& = 2 : PRINT A& DIV B&

• Operands of DIV can only be long integers.

• Business BASIC has 9 arithmetic operators:

+ Unary plus

I
MOD

Unary minus
Exponentiation
Multiplication
Floating-point division
Modulo division

DIV Integer division
+ Addition

Subtraction

31

Returns 3

DIVISION

TYPE Arithmetic operator

FORMAT numeric expression 1 I numeric expression2

ACTION Performs an arithmetic division.

EXAMPLE

NOTES

1 . numeric expression can be a numeric constant;

PRINT 20 I 10
PRINT 40 I 10 I 2
PRINT 20 I (-10)

2. a numeric variable;

A = 40 : B = 20 : C = 1 0 : D = 2 : E = -1 0
PRINT B I C
PRINT A I C I D
PRINT B I (-E)

3. any valid combination thereof.

A = 40 : B = 20 : C = 1 0 : D = 2 : E = -1 0
PRINT 20 I C
PRINT A I C I D
PRINT 20 I (-E)

• Business BASIC has 9 arithmetic operators:

+ Unary plus

*

I
MOD

Unary minus
Exponentiation
Multiplication
Floating-point division
Modulo division

DIV Integer division
+ Addition

Subtraction

32

symbol!

Returns 2
Returns 2
Returns 2

Returns 2
Returns 2
Returns 2

Returns 2
Returns 2
Returns 2

DOLLAR symbol$

TYPE Identifier

FORMAT string variable name$

ACTION Identifies the variable as being of the string type.

EXAMPLE

RESULT

Variables have identifiers attached to specify which type of value they
represent.

10 A$ = 'THE$ IDENTIFIER "
20 A1$ = "DEFINES A VARIABLE "
30 AA$ = ':AS BEING OF "
40 ALPHA$ = "THE STRING TYPE"
50 PRINT A$ + A1$ + AA$ + ALPHA$
60 END

Line 10- 40: Four assignment statements of strings to string variables.

NOTES

50: Prints the four strings concatenated (joined together) into one string:

THE $ IDENTIFIER DEFINES A VARIABLE AS BEING OF THE
STRING TYPE.

• The use of a reserved word as a variable is illegal:

Example: CHR$

• The number of characters in a string expression may range from
0 (zero) to 255. A null string is a string that contains no characters.

Example: A$ = ""

• A numeric variable without an identifier is automatically of the
single-precision type.

• Business BASIC has three identifiers attached to variable names:

& For variables of the long integer type
% For variables of the integer type
$ For variables of the string type

33

E stands for EXPONENTIAL NOTATION

TYPE Operator

FORMAT number E positive or negative exponent

ACTION Indicates exponential (or scientific) notation.

EXAMPLE

NOTES

The letter E means "times 10 to the power of the exponent:' Any real
number can be expressed in exponential notation, which is particularly
useful for very large numbers or small fractions.

1. 1234E-2

2. 0.1234E2

3. 0.1234E+2

Exponential notation for 12.34

Exponential notation for 12.34

Exponential notation for 12.34

• A positive exponent is assumed if no sign is used.

• With a plus sign (+), the decimal point is moved to the right. With a
minus sign (-), the decimal point is moved to the left. The number of
places is indicated by the number following the letter E.

• Business BASIC has 9 arithmetic operators:

+ Unary plus

*

I
MOD

Unary minus
Exponentiation
Multiplication
Floating-point division
Modulo division

DIV Integer division
+ Addition

Subtraction

34

ELSE

TYPE Statement

FORMAT : ELSE [arithmetic expression I line number l

ACTION If the condition of an IF . .. THEN statement is true, the statement list
following THEN is executed. If the condition is false, the statement list that
follows ELSE is executed instead.

EXAMPLE

10 INPUT X%
20 IF X% = 1 THEN GOSUB 1000 : ELSE GOSUB 2000

RESULT

Line 10: Accepts input and assigns it to the variable X%.

NOTES

20: If X% = 1, sends program to line 1000; otherwise (if X% <> 1),
sends program to line 2000.

• Business BASIC has 6 relational operators:

Equal to
<> or >< Not equal to
> Greater than
> = or = > Greater than or equal to
< Less than
< = or = < Less than or equal to

35

END

TYPE Statement

FORMAT END

ACTION Marks the end of a program or subroutine.

EXAMPLE

NOTES

Terminates program execution, closes all files, and returns to command
(keyboard} level. END statements may be placed anywhere in the
program.

10 INPUT Q$
20 IF Q$ = "YES" THEN 1000

I
1000 END

10 INPUT Q$
20 IF Q$ = "YES" THEN END

1 0 GOSUB 1000
20 END

I
1000 PRINT "SUBROUTINE"
1010 RETURN

• After an END statement is executed, BASIC always returns to
command level. END at the end of a program is optional.

• STOP also terminates program execution. However, STOP displays
a "Break" message, whereas END does not, and STOP does not
automatically close files.

36

EOF stands for END OF FILE

TYPE File reserved variable

FORMAT EOF

ACTION Contains the reference number of the file causing an end-of-file error.

EXAMPLE

RESULT

NOTES

1. PRINT EOF

2. ON (EOF) GOTO 1000, 2000, 3000

1. Determines the file that has caused an end-of-file error.

2. Program execution branches to line numbers 1000, 2000, or 3000
according to the value assigned to the variable EOF.

• When used with conditional statements, EOF must be enclosed in
parentheses.

37

EQUAL TO symbol

TYPE Relational operator

FORMAT expression 1 = expression2

ACTION Allows a logical comparison to be made between two expressions.

expression 1 and expression2 are either both numeric or both string. The
comparison returns a logical value. If both expressions have equivalent
values, the result of the comparison is true (non-zero, represented by
the numerical value -1); otherwise, the expression is false (zero,
represented by 0). Relational operators are usually used in conditional
statements, such as IF ... THEN statements, to make a decision regarding
program flow.

EXAMPLE

RESULT

1 0 A = 1 0 : B = 20 : C = 2 : X$ = "TRUSTY" : Y$ = "TRUST"
20 IF A = B THEN PRINT 'TRUE" : ELSE PRINT "FALSE"
30 IF A = B/C THEN PRINT "TRUE" : ELSE PRINT "FALSE"
40 IF X$ > = Y$ THEN PRINT "TRUE" : ELSE PRINT "FALSE"

Line 10: Assigns values to the numeric variables A, B, C, and the string

NOTES

variables X$ and Y$.

20: Since A is not equal to B, prints: FALSE.

30: Since A is equal to B divided by C, prints : TRUE.

40: Since TRUSTY is not equal to TRUST, prints: FALSE.

• The strings are compared character by character, from left to right,
on the basis of their ASCII code numbers. The first character found in
one string that has a greater ASCII value than the character found
in the same position in the second string makes the first string greater.
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has 6 relational operators:

Equal to
<> or >< Not equal to
> Greater than
> = or = > Greater than or equal to
< Lessthan
< = or = < Less than or equal to

38

ERR stands for ERROR

TYPE File reserved variable

FORMAT ERR

ACTION Contains the code number corresponding to the type of the detected error.

EXAMPLE

RESULT

1 0 ON ERR GOTO 70
20 DIM A (12)
30 FOR X = 1 TO 12 : READ A: NEXT X
40 GOTO 80
50 DATA 1, 2, 3, 4, 5, 6
60 END
70 IF ERR = 4 THEN RESUME 40
80 PRINT "Program execution continues"

Line 10: If an error occurs, ON ERR causes an unconditional branching to line
number 70.

NOTES

20: Dimensions a 12-element list.

50: Since the DATA statement contains only 6 data items, the
unconditional branching ON ERR GOTO 70 is executed.

70: Program execution resumes at line 40 (the code number of the
?OUT OF DATA ERROR is 4).

40: GOTO causes an unconditional branching to line 80.

80: Program execution continues at line 80.

• ERR is usually used in IF ... THEN conditional statements to direct
program flow to the error-handling subroutines.

• You can refer to ERR to determine what kind of error occurred.

39

ERR LIN stands for ERROR and LINE

TYPE File reserved variable

FORMAT ERRLIN

ACTION Contains the line number where an error occurred.

EXAMPLE

RESULT

NOTES

10 ON ERR GOTO 100
20 INPUT N
30 IF N = 9 THEN END
40 A = 12/N
50 PRINT A : GOTO 20

100 N=N+1
110 PRINT "Error at line number"; ERRLIN
120 PRINT "Error code number "; ERR
130 RESUME
140 END

Line 10: If an error occurs, the ON ERR statement causes program execution
to branch at line 1 00.

20: A division by zero is considered and "error." If a 0 (zero) is input
and assigned to variable N, program execution automatically
branches to line 100.

100: Entry point of the error-handling subroutine. N is reinitialized:
(~ + 1 = 1).

110: Displays the line number where the error occurred.

120: Displays the code number of the error (14 for a DIVISION BY
ZERO error).

130: Causes program execution to branch again to line 40.

40: Variable A is assigned the result of the new computation: A = 12/1.

50: Displays the result, and program continues at line 20.

• ERRLIN is usually used in IF ... THEN conditional statements to direct
program flow to the error-handling subroutines.

40

EXEC stands for EXECUTE

TYPE File statement

FORMAT EXEC pathname

ACTION Starts sequential execution automatically directed by programs stored
in a text file.

EXAMPLE

RESULT

NOTES

EXEC ".D2/PILOT"

Assuming:

1. we had previously saved on disk three programs named
PROGRAM.ONE, PROGRAM.TWO, and PROGRAM.THREE,
respectively;

2. there also is on disk a text file named PILOT containing the statements:
RUN PROGRAM.1, RUN PROGRAM.2, and RUN PROGRAM.3.

The EXEC command will direct automatic and sequential execution of
the three programs by reading the contents of the PILOT file and acting on
this as though you were typing the same commands from the keyboard.

• After the three programs' execution is terminated, control is returned
to the keyboard. Control is also returned to the keyboard if:

-program execution is stopped by pressing CONTROL-C
-a STOP statement is encountered
-an error occurs
-an end-of-file marker is encountered

• If an INPUT or a GET statement occurs in a program, it takes its input
from the next line of the text file, not the keyboard.

• EXEC automatically opens the file it uses.

41

EXP stands for EXPONENTIATION

TYPE Numeric function

FORMAT EXP (arithmetic expression)

ACTION Returns the value of E to the power of arithmetic expression.

EXAMPLE

NOTES

The mathematical number e (2. 718289) is the base for natural logarithms.
Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

1. arithmetic expression can be a numeric constant:

PRINT EXP (2)
PRINT EXP (6- 2)

2. a numeric variable;

A=2:B=6
PRINT EXP (A)
PRINT EXP (B-A)

3. any valid combination thereof.

1 0 FOR J = 2 TO 6 STEP 2
20 PRINT EXP (J)
30 NEXT J

• EXP is the opposite of LOG.

Returns 7.3890561
Returns 54.5981501

Returns 7.3890561
Returns 54.5981501

Returns 7.3890561
Returns 54.5981501
Returns 403.428793

Example: E = EXP (2) : L = LOG (E) : PRINT L Returns 2

• Business BASIC has 16 numeric functions in the following type

categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR
CONV, CONV%, CONV&, CONV$
DEF FN

42

EXPONENTIATION symbol"

TYPE Arithmetic operator

FORMAT base " power

ACTION Performs an arithmetic exponentiation, that is, raises base to the power
of power.

EXAMPLE

NOTES

base and power are both numeric expressions.

1. numeric expression can be a numeric constant;

PRINT 10 " 2
PRINT 10 " 2 " 2
PRINT - 10 "(- 2)

2. a numeric variable;

B = 10 : P = 2
PRINT B " P
PRINT B " P " P
PRINT -B " (-P)

3. any valid combination thereof.

B = 10: P = 2
PRINT B " 2
PRINT 20 " P " 2
PRINT -10 " (-P)

• In the example, the base = 10 and the power = 2.

• Business BASIC has 9 arithmetic operators:

+ Unary plus

*

I
MOD

Unary minus
Exponentiation
Multiplication
Floating-point division
Modulo division

DIV Integer division
+ Addition

Subtraction

43

Returns 100
Returns 1 0000
Returns -.01

Returns 100
Returns 1 0000
Returns - .01

Returns 100
Returns 1 0000
Returns - .01

FN stands for FUNCTION

TYPE User-defined function

FORMAT FN function name (arithmetic expression {L arithmetic expression] }

ACTION Processes the value given by arithmetic expression according to a
previously defined set of operations.

The DEF FN statement is used to define a function as a particular set
of operations and to give the function a name (beginning with FN).
User-defined functions serve the same purposes as predefined built-in
functions.

EXAMPLE

10 DEF FNA (X) = INT (X * 100 + .5)/100
20 DEF FNB (X) = INT (X * 1000 + .5)/1 000
30 M = 6.123456
40 PRINT FNA (M)
50 PRINT FNB (M)
60 END

RESULT

NOTES

Line 10: Definition of function A for rounding ott to 2 decimals.

20: Definition of function B for rounding off to 3 decimals.

30: Assignment of the value 6.123456 to the variable M.

40: Prints the value M with 2 decimals (user-defined function FNA).

50: Prints the value M with 3 decimals (user-defined function FNB).

• The variable X, enclosed in parentheses after the keyword FN in the
DEF statement, is called a dummy variable; it is used again in the
operation to the right of the equal sign, in order to define the relation­
ships. Using the variable X in this way has no effect on the program as
a whole or on the value of X used in any other context within the
program. After the definition of the function, any numeric constant,
numeric variable, or arithmetic expression can be substituted for the
dummy variable X in parentheses.

44

FOR

TYPE Statement

FORMAT FOR control variable = aexpr1 TO aexpr2 [STEP aexpr3]

I
NEXT [control variable {, control variable }l

ACTION Sets up a program loop that repeats the series of instructions inside the
loop a given number of times.

EXAMPLE

RESULT

aexpr is an arithmetic expression. The loop begins with the FOR
statement and ends with the NEXT statement. Every instruction in
between is executed once with each repetition. Every repetition

automatically increments (adds to) the value of control variable by a value
equal to expr3; if STEP is omitted, the default increment is 1. control
variable starts off having a value equal to expr1 ; when the value of

control variable reaches expr2, the loop is ended and program execution
continues with the statement after NEXT. A conditional statement can
be used to exit the loop before it is finished.

1 0 FOR B = 1 TO 1 0
20 PRINT ''AZ";
30 NEXT B
40 END

Line 1 0: Sets up a loop to repeat 1 0 times.

20: Prints string AZ.

NOTES

30: Repeats from line 10.

• The initial value of control variable B has been incremented by the
default value of 1.

• A loop structure may contain other loops within it, provided that the

loops are nested.

45

FRE stands for FREE

TYPE Statement

FORMAT FRE

ACTION Returns the number of bytes of memory remaining available to the user.

EXAMPLE

RESULT

10 IF FRE < 6000 THEN 30
20 PRINT "Sufficient memory available" : END
30 PRINT "Insufficient free memory".
40 END

Line 10: If there are fewer than 6000 bytes of free memory, program execution
jumps to line 30; otherwise, it defaults to line 20.

NOTES

20: Prints message: "Sufficient memory available" if there are 6000
or more bytes of free memory available.

30: Prints message: " Insufficient free memory".

• Whenever possible, the use of:

-multiple line statements
-no REM statements
-integer array variables
-variables instead of constants
-GOSUB statements
-0 (zero) elements of matrices

will save memory space and speed up program execution.

46

GET

TYPE Statement

FORMAT GET variable

ACTION Gets a single character from the keyboard and assigns it to variable .

EXAMPLE

RESULT

NOTES

The character is not displayed on the screen, and the user is not required
to press the RETURN key.

10 PRINT "Type C to Continue, E to End."
20 GET C$
30 IF C$ = "C" THEN GOSUB 1000 : END
40 If C$ = "E" THEN END
50 PRINT "Invalid entry. Try again." : GOTO 10
60 END

1000 REM "** SUBROUTINE

I
2000 RETURN

Line 10: Prints the message.

20: Returns any character entered at the keyboard as C$.

30: If C is typed, program execution passes to the subroutine at
line 1000.

40: If E is typed, ends the program.

50: If any other character is typed, prints the message and jumps
back to line 10.

60: Ends the program.

1000: Start of the subroutine.

2000: Returns the program execution to the next statement following the
most recently executed GOSUB statement.

• The GET statement may be followed by either a numeric or an
alphanumeric variable. However, there are restrictions on entries if the
variable is defined as numeric, and most programmers assign the
input to a string variable and then convert the string to a number using
the VAL function.

47

GOSUB stands for GO and SUBROUTINE

TYPE Statement

FORMAT GOSUB line number

ACTION

EXAMPLE

RESULT

NOTES

I
RETURN

Transfers program execution unconditionally to line number.

GOSUB is used to set up subroutines that can be used more than once by
various parts of the program. line number is the first line of the subroutine.
The subroutine consists of the statements between line number and
RETURN. The RETURN statement causes program execution to continue
with the next executable statement after GOSUB.

10 PRINT 'Type C to Continue, E to End."
20 INPUT C$
30 IF C$ = "C" THEN GOSUB 1000 : END
40 IF C$ = "E" THEN END
50 PRINT "Invalid entry. Try again." : GOTO 10
60 END

1000 REM *** SUBROUTINE

I
2000 RETURN

Line 10: Prints the message.

20: Accepts input and assigns it to variable the C$.

30: If C is typed, program execution passes to the subroutine at
line 1000.

40: If E is typed, ends the program.

50: If any other character is typed, prints the message and jumps
back to line 1 0.

60: Ends the program.

1000: Start of the subroutine.

2000: Returns the program execution to the next statement following the
most recently executed GOSUB statement.

• A subroutine must always end with a RETURN statement to cause
program execution to continue from the next statement following the
GOSUB statement.

48

GOTO

TYPE &~erne~

FORMAT GOTO line number

ACTION Transfers program execution unconditionally to a specified line number.

EXAMPLE

RESULT

10 GOTO 40
20 PRINT "PROGRAM EXECUTION JUMPED BACK TO LINE 20"
30 END
40 PRINT "PROGRAM EXECUTION IS TRANSFERRED TO LINE 40"
50 GOTO 20

Line 10: Program execution is transferred to line 40.

40: Prints the string:

NOTES

PROGRAM EXECUTION IS TRANSFERRED TO LINE 40

50: Program execution returns to line 20.

20: Prints the string:

PROGRAM EXECUTION JUMPED BACK TO LINE 20

30: END of the program.

• If line number refers to a nonexecutable statement (such as REM
or DATA), program execution continues with the first executable
statement encountered at the next higher line number.

• In debugging, the GOTO statement can be used in direct mode to
resume execution from a desired point in the program.

49

GREATER THAN symbol>

TYPE Relational operator

FORMAT expression 1 > expression2

ACTION Allows a logical comparison to be made between two expressions.

expression 1 and expression2 are either both numeric or both string.
The comparison returns a logical value. If expression 1 has a greater value
than expression2, the result of the comparison is true (non-zero,
represented by the numerical value -1); otherwise, the result is false
(represented by 0). Relational operators are usually used in conditional
statements, such as IF . .. THEN statements, to make a decision regarding
program flow.

EXAMPLE

RESULT

10 A = 10 : B = 20 : C = 2 : X$ = "TRUSTY" : Y$ = "TRUST"
20 IF B > A THEN PRINT "TRUE" : ELSE PRINT "FALSE"
30 IF A> B/C THEN PRINT "TRUE" : ELSE PRINT "FALSE"
40 IF X$ > Y$ THEN PRINT "TRUE" : ELSE PRINT "FALSE"

Line 10: Assigns values to the numeric variables A, B, C, and the string

NOTES

variables X$ and Y$.

20: Since B is greater than A, prints: TRUE.

30: Since A is not greater than B divided by C, prints: FALSE.

40: Since TRUSTY is greater than TRUST, prints: TRUE.

• The strings are compared character by character, from left to right, on
the basis of their ASCII code numbers. The first character found in one
string that has a greater ASCII value than the character found in
the same position in the second string makes the first string greater.
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has 6 relational operators:

Equal to
<> or >< Not equal to
> Greater than
> = or = > Greater than or equal to
< Less than
<= or =< Less than or equal to

50

GREATER THAN OR EQUAL TO >=or=>
TYPE Relational operator

FORMAT expression1 > = expression2

ACTION Allows a logical comparison to be made between two expressions.

expression1 and expression2 are either both numeric or both string.
The comparison returns a logical value. If the value of expression1 is
greater than or equivalent to expression2, the result of the comparison
is true (non-zero, represented by the numerical value - 1); otherwise,
the result is false (zero, represented by 0). Relational operators are
usually used in conditional statements, such as IF . .. THEN statements,
to make a decision regarding program flow.

EXAMPLE

RESULT

1 0 A = 1 0 : B = 20 : C = 2 : X$ = "TRUSTY" : Y$ = "TRUST"
20 IF B > = A THEN PRINT "TRUE" : ELSE PRINT "FALSE"
30 IF A>= B/C THEN PRINT "TRUE" : ELSE PRINT "FALSE"
40 IF X$>= Y$ THEN PRINT "TRUE" : ELSE PRINT "FALSE"

Line 10: Assigns values to the numeric variables A, B, C, and the string

NOTES

variables X$ and Y$.

20: Since B is greater than A, prints: TRUE.

30: Since A is equal to B divided by C, prints: TRUE.

40: Since TRUSTY is greater than TRUST, prints: TRUE.

• The strings are compared character by character, from left to right, on
the basis of their ASCII code numbers. The first character found in one
string that has a greater ASCII value than the character found in
the same position in the second string makes the first string greater:
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has 6 relational operators:

Equal to
<> or >< Not equal to
>
>=or=>
<

Greater than
Greater than or equal to
Less than

< = or = < Less than or equal to

51

HEX$ stands for HEXADECIMAL

TYPE String function

FORMAT HEX$ (arithmetic expression)

ACTION Returns a string that represents the hexadecimal value of arithmetic
expression.

EXAMPLE

RESULT

1 0 FOR J = 1 TO 15
20 PRINT HEX$(J)
30 NEXT J

Line 10: Sets up a loop to repeat 15 times.

NOTES

20: Displays the hexadecimal value of the decimal value of variable J:

7
D

2
8
E

30: Repeats from line 10.

3
9
F

4
A

5
B

6
c

• The dollar sign ($) is an identifier that defines a function or a variable
name as being of the string type.

• arithmetic expression is rounded to an integer before it is evaluated.
For instance, 15.36 would be rounded to 15 before the equivalent
hexadecimal value (F) is returned.

• arithmetic expression must be in the decimal range from - 65535 to
+ 65535. If arithmetic expression is negative, the two's complement
form is used, that is,

HEX$ (-expression) = HEX$ (65535-expression)

Both A$ = HEX$ (-25) and B$ = HEX$ (65536- 25) return FFE7.

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

52

HOME

TYPE Statement

FORMAT HOME

ACTION Clears the screen and sets the cursor to the upper-leftmost position.

EXAMPLE

RESULT

10 HOME
20 INVERSE
30 PRINT "BLACK characters on a WHITE background"
40 FORT = 1 TO 1000: NEXT T
50 NORMAL
60 PRINT "WHITE characters on a BLACK background"
70 END

Line 10: Clears the screen and sets the cursor to the upper-leftmost position.

20: Sets the inverse display mode.

NOTES

30: Displays the string:

BLACK characters on a WHITE background

40: Delay loop.

50: Restores the normal display mode.

60: Displays the string:

WHITE characters on a BLACK background

• No parameter is required after HOME.

• HOME may be used either in the immediate (command) mode by
typing HOME and pressing the RETURN or ENTER key or in the
deferred (program) mode with a line number.

53

HPOS stands for HORIZONTAL and POSITION

TYPE Reserved variable

FORMAT HPOS = arithmetic expression

ACTION Specifies the horizontal position of the cursor within a "window" or the
total screen.

EXAMPLE

NOTES

You can find the current position of the cursor by referring to the value of
HPOS in a PRINT command/statement. The current horizontal position
is relative to the left margin of the window. arithmetic expression can
be any integer constant or variable or any real arithmetic expression.

HPOS = 6
moves the cursor horizontally to the sixth column within the current
window.

• All parameters are relative to the current window dimensions. For
instance, in HPOS = 1, 1 specifies the first column within the
current window.

• When HPOS is used to move the cursor horizontally, the cursor's
vertical position is not affected.

• Values must be within the range from 0 (zero) to 255. A value of
0 (zero) is automatically converted to a value of 1. HPOS cannot move
the cursor to a position outside the window. HPOS values greater
than the width of the window cause the cursor to move to the righthand
margin of the window.

54

IF ... GOTO

TYPE Statement

FORMAT IF logical expression GOTO line number [:ELSE line number
statement list]

ACTION Sends program execution to line number if logical expression is true
(non-zero); otherwise:

EXAMPLE

RESULT

1. if no ELSE clause is used, program execution passes to the next line
in sequence;

2. if an ELSE clause is used, program execution passes to line number
or statement list following ELSE.

IF ... GOTO is called a conditional statement; it is one of the most
commonly used statements in BASIC. It redirects program execution on
the basis of the truth or falsity of logical expression. logical expression is
usually a relational expression, comparing two values with relational
operators.

10 INPUT "YES OR NO"; X$
20 IF X$ = "YES" GOTO 40
30 IF X$ = "NO" GOTO 50 : ELSE 10
40 PRINT "Program execution is transferred to line 40" : END
50 PRINT "Program execution is transferred to line 50"

Line 10: Asks for input and assigns it to variable X$.

NOTES

20: If X$ is YES, program execution jumps to line 40.

30: If X$ is NO, execution jumps to line 50; otherwise, the statement
following ELSE is executed.

40: Prints the message. Ends the program.

50: Prints the message.

• The ELSE clause cannot be on a separate program line.

55

IF ... THEN

TYPE Statement

FORMAT IF logical expression THEN line number [:ELSE line number
statement list]

ACTION Sends program execution to line number or executes statement list
following THEN if logical expression is true (non-zero); otherwise:

EXAMPLE

RESULT

1. if no ELSE clause is used, program execution passes to the next line in
sequence;

2. if the ELSE clause is used, program execution passes to line number
or statement list following ELSE.

IF ... THEN is called a conditional statement; it is one of the most
commonly used statements in BASIC. It redirects program execution on
the basis of the truth or falsity of logical expression . logical expression is
usually a relational expression, comparing two values with relational
operators.

10 INPUT "YES OR NO"; X$
20 IF X$ = "YES" THEN 40
30 IF X$ = "NO" THEN 50 : ELSE 10
40 PRINT "Program execution is transferred to line 40" : END
50 PRINT "Program execution is transferred to line 50"

Line 10: Asks for input and assigns it to variable X$.

NOTES

20: If X$ is YES, program execution jumps to line 40.

30: If X$ is NO, execution jumps to line 50; otherwise, the statement
following ELSE is executed.

40: Prints the message. Ends the program.

50: Prints the message.

• The ELSE clause cannot be on a separate program line.

56

IMAGE

TYPE Statement

FORMAT IMAGE specification [{,specification }l

ACTION Stores the format specifications to be used by a PRINT[#] USING
statement.

EXAMPLE

RESULT

The PRINT USING and PRINT# USING statements are collectively
referred to as PRINT [#] USING. PRINT [#] USING must refer to the line
number of the IMAGE statement that it uses to format output.

10 IMAGE +###.###
20 PRINT USING 1 0; 1.1, 1.23456. 123.1, 1

Line 10: Format specification.

NOTES

20: PRINT USING displays output according to the format specified by
the IMAGE statement at line 10:

+1.100
+1 .235

+123.100
+1.000

• IMAGE can only be used as a program statement.

• Each specification, separated by a comma, corresponds to one
printing field and controls the displayed format of the corresponding
value.

• A single format specification may be used to display more than one
numeric value.

57

INDENT

TYPE Reserved variable

FORMAT INDENT = arithmetic expression

ACTION Contains the number of spaces to be used to indent FOR ... NEXT loops
in program listings.

EXAMPLE

RESULT

NOTES

INDENT = 5

10 FOR X = 1 TO 100
20 PRINT X
30 NEXT X

LIST

In the above example, the reserved variable INDENT is assigned a value
of 5 in direct mode before entering the program.

The LIST command in direct mode returns the following indented display:

10 FOR X = 1 TO 100
20 PRINT X
30 NEXT X

5 spaces have been used to indent the above loop.

• The system's default value is set to 2 spaces.

58

INPUT

TYPE Statement

FORMAT INPUT [string, I;] variable {, variable}

ACTION Prints the prompt string (if present) on the screen; halts program execution
and waits for input from the keyboard; assigns each item as it is input to
the next variable in the variable list.

EXAMPLE

RESULT

variable may be the name of a numeric, a string, or an array variable.
Data items entered from the keyboard must be of the same type
(numeric/string) as the corresponding variables. They must be separated
by commas, and their number must be the same as the number of
variables in the list.

10 REM ***INPUT SUBROUTINE
20 INPUT "Customer order number:"; ORDER%
30 INPUT "Item number:" ; ITEM%
40 INPUT "Quantity:"; QUANT%
50 RETURN

Line 10: Remarks to document subroutine.

NOTES

20: Prints the string on the screen and assigns input to ORDER%.

30: Prints the string on the screen and assigns input to ITEM%.

40: Prints the string on the screen and assigns input to QUANT%.

50: Returns execution to the main program.

• Multiple data items typed on the same input line must be separated by
commas.

• Pressing the RETURN or ENTER key signals the end of the input line.

• A question mark is usually printed to prompt the user. You may use a
comma instead of a semicolon after the prompt to suppress the
question mark.

59

INPUT#

TYPE File statement

FORMAT INPUT# file number [, record number]; variable [{, variable }JJ

ACTION Reads a TEXT file whose reference number is specified following the
number sign.

EXAMPLE

COMMENTS

NOTES

file number is the number used when the file was opened for input.

INPUT#1 ,32;A,B%,C$

• record number following the file reference number specifies where
reading should start.

• A comma separates the file number from the record number.

• A semicolon must separate the record number from the variable list.

• INPUT# reads a line of text for each variable in its list of variables.
A comma must separate each variable.

• The variable list above consists of a real variable (A), an integer
variable (8%), and a string variable (C$).

• INPUT# automatically performs any necessary string to numeric-type
conversions, similar to the VAL function.

• You may open a directory as you would a TEXT file by specifying the
pathname. Like a CATALOG statement, INPUT# may then access
the directory to return its data one line at a time.

60

I NSTR stands for IN and STRING

TYPE String function

FORMAT INSTR (subject string, target string [, starting position 1)

ACTION Returns a number representing the position of target string within
subject string.

EXAMPLE

NOTES

The optional starting position is a numeric expression; subject string
and target string are string expressions. The value returned by the
INSTR function is the numeric value of the position of target string's first
character within subject string. Searching is done from starting position.
If target string is not found, the returned numeric value is 0 (zero).

1. string expression can be a string constant;

PRINT INSTR ("BLABLABL.A:', ''A", 1)
PRINT INSTR ("BLABLABLA", ''A", 4)
PRINT INSTR ("BLABLABLA", ''A", 7)

2. a string variable.

A$ = "BLABLABLA" : B$ = ''A"

PRINT INSTR (A$, B$, 1)
PRINT INSTR (A$, B$, 4)
PRINT INSTR (A$, B$, 7)

Returns 3
Returns 6
Returns 9

Returns 3
Returns 6
Returns 9

• starting position should not be larger than the maximum string length,
which is 255 characters.

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

61

INT stands for INTEGER

TYPE Numeric function

FORMAT INT (arithmetic expression)

ACTION Returns the largest integer smaller than or equal to arithmetic expression.

EXAMPLE

NOTES

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

1. arithmetic expression can be a numeric constant;

PRINT INT (1.234)
PRINT INT (12.345)

2. a numeric variable;

A= 25.65 : B = -25.65
PRINT INT (A)
PRINT INT (B)

3. an arithmetic operation;

PRINT 10 + INT (20.36)
PRINT INT (12.1 * 6)

4. any valid combination thereof.

A = -25.65 : B = 30.36-20
PRINT 10 + INT (A+ B + (10.1 * 6))

Returns 1
Returns 12

Returns 25
Returns -26

Returns 30
Returns 72

Returns 55

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS,EXP,INT,LOG, RND,SGN, SQR
CON\/, CONV%, CONV&, CONV$
DEF FN

62

INVERSE

TYPE Statement

FORMAT INVERSE

ACTION Sets screen output in the inverse mode.

EXAMPLE

RESULT

10 HOME
20 INVERSE
30 PRINT "BLACK characters on a WHITE background"
40 FORT = 1 TO 1000: NEXT T
50 NORMAL
60 PRINT "WHITE characters on a BLACK background"
70 END

Line 10: Clears the screen and sets the cursor to the upper-leftmost position.

20: Sets the inverse display mode.

NOTES

30: Displays the string:

BLACK characters on a WHITE background

40: Delay loop.

50: Restores the normal display mode.

60: Displays the string:

WHITE characters on a BLACK background

• No parameter is required after INVERSE.

• INVERSE may be used either in the immediate (command) mode
by typing INVERSE and pressing the RETURN or ENTER key or in
the deferred (program) mode with a line number.

63

KBD stands for KEYBOARD

TYPE Reserved variable

FORMAT KBD

ACTION Contains the ASCII code number of the last key pressed on the keyboard.

EXAMPLE

RESULT

NOTES

10 ON KBD GOTO 100
20 GOTO 10

100 PRINT KBD
110 IF KBD = 65 THEN END
190 ON KBD GOTO 100
200 RETURN

Line 10: Program execution is transferred to line 1 00 when any key is
pressed.

100: PRINT returns the ASCII code number of the key.

110: If the key struck is a capital A (ASCII code number = 65), the
END statement is executed and the program halts.

190: The ON KBD statement is re-enabled.

200: The RETURN statement branches program execution to the
statement following ON KBD, that is, line 20.

20: Unconditional transfer to line 10.

• The last statement of a subroutine to which program execution has
been transferred with ON KBD must always be a RETURN statement.

• The ON KBD statement must be re-enabled (executed) just before
the RETURN statement.

64

LEFT$

TYPE String function

FORMAT LEFT$ (string expression, number of characters)

ACTION Returns the leftmost number of characters of string expression .

EXAMPLE

NOTES

1. string expression can be a string constant;

PRINT LEFT$ (':AFTERNOON",3)
PRINT LEFT$ (':AFTERNOON",5)

2. a string variable;

A$ = ':AFTERNOON"
PRINT LEFT$ (A$,3)
PRINT LEFT$ (A$,5)

3. any valid combination thereof.

A$ = ':AFTER" : A = 5
PRINT LEFT$ (A$ + "NOON",A)

Returns AFT
Returns AFTER

Returns AFT
Returns AFTER

Returns AFTER

• If number of characters is greater than the total length of string
expression , the entire string is returned. If number of characters = 0,
the null string (" ") is returned.

• The maximum string length is 255 characters.

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

65

LEN stands for LENGTH

TYPE String function

FORMAT LEN (string expression)

ACTION Returns the length (number of characters) of string expression.

EXAMPLE

NOTES

1 . string expression can be a string constant;

PRINT LEN (''AFTERNOON")
PRINT LEN (''A 1 F2T + E/R%N !0 0 N")

2. a string variable;

A$ = ''AFTER" : B$ = "NOON"
PRINT LEN (A$)
PRINT LEN (B$)

3. any valid combination thereof.

A$ = ''AFTER" : B$ = "NOON"
PRINT LEN (A$ + B$)

• The LEN function returns an integer number.

• LEN counts all characters including blank spaces.

Returns 9
Returns 17

Returns 5
Returns 4

Returns 9

• The number of characters in a string expression may range from
0 (zero) to 255. A null string is a string that contains no characters.

• A string variable is identified by a dollar sign ($).

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

66

LESS THAN symbol <
TYPE Relational operator

FORMAT expression1 < expression2

ACTION Allows a logical comparison to be made between two expressions.

expression 1 and expression2 are either both numeric or both string.
The comparison returns a logical value. If the value of expression 1 is
less than the value of expression2, the result of the comparison is true
(non-zero, represented by the numerical value -1); otherwise, the result
is false (represented by 0). Relational operators are usually used in
conditional statements, such as IF ... THEN statements, to make a
decision regarding program flow.

EXAMPLE

RESULT

10 A = 1 0 : B = 20 : C = 2 : X$ = "TRUSTY" : Y$ = "TRUST"
20 IF A < B THEN PRINT "TRUE" : ELSE PRINT "FALSE"
30 IF A < B/C THEN PRINT "TRUE" : ELSE PRINT "FALSE"
40 IF X$ < Y$ THEN PRINT "TRUE" : ELSE PRINT "FALSE"

Line 10: Assigns values to the numeric variables A, B, C, and the string

NOTES

variables X$ and Y$.

20: Since A is less than B, prints: TRUE.

30: Since A is not less than B divided by C, prints: FALSE.

40: Since TRUSTY is not smaller than TRUST, prints: FALSE.

• The strings are compared character by character, from left to right, on
the basis of their ASCII code numbers. The first character found in one
string that has a greater ASCII value than the character found in
the same position in the second string makes the first string greater.
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has 6 relational operators:

Equal to
<> or >< Not equal to
> Greater than
> = or = > Greater than or equal to
< Lessthan
< = or = < Less than or equal to

67

LESS THAN OR EQUAL TO symbol<= or =<
TYPE Relational operator

FORMAT expression 1 < = expression2

ACTION Allows a logical comparison to be made between two expressions.

expression1 and expression2 are either both numeric or both string.
The comparison returns a logical value. If the value of expression 1 is
less than or equal to the value of expression2, the result of the
comparison is true (non-zero, represented by the numerical value -1);
otherwise, the result is false (represented by 0). Relational operators are
usually used in conditional statements, such as IF ... THEN statements,
to make a decision regarding program flow.

EXAMPLE

RESULT

10 A= 10 : B = 20 : C = 2 : X$ = "TRUSTY" : Y$ = "TRUST"
20 IF A <= B THEN PRINT "TRUE" : ELSE PRINT "FALSE"
30 IF A<= B/C THEN PRINT "TRUE" : ELSE PRINT "FALSE"
40 IF X$<= Y$ THEN PRINT 'TRUE" : ELSE PRINT "FALSE"

Line 10: Assigns values to the numeric variables A, B, C, and the string

NOTES

variables X$ and Y$.

20: Since A is less than B, prints: TRUE.

30: Since A is equal to B divided by C, prints: TRUE.

40: Since TRUSTY is not smaller or equal to TRUST, prints: FALSE.

• The strings are compared character by character, from left to right, on
the basis of their ASCII code numbers. The first character found in one
string that has a greater ASCII value than the character found in
the same position in the second string makes the first string greater.
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has 6 relational operators:

Equal to
<> or >< Not equal to
> Greater than
>= or => Greater than or equal to
< Less than
< = or = < Less than or equal to

68

LET

TYPE Assignment statement

FORMAT [LET] variable I reserved variable = value

ACTION Assigns value to the variable specified by variable name .

EXAMPLE

RESULT

The type of value (string or numeric) must match the type of variable .

10 LET A= 10
20 LET B = A + 1 0
30 LET C = (A * B)/2
40 LET L$ = "THE BASIC LANGUAGE"
50 PRINT A, B, C, L$
60 END

Line 10: Variable A is assigned the value 10.

NOTES

20: Variable B is assigned the result of the addition.

30: Variable Cis assigned the result of the mathematical operation.

40: Variable L$ is assigned the string THE BASIC LANGUAGE.

50: The four variables' values are printed out.

• The keyword LET is optional.

variable name = value

and

LET variable name = value

are equivalent statements.

• Although variable name = value looks like a relational expression, it is
interpreted by BASIC as an assignment statement, and has no logical
value.

• Programmers sometimes use LET to emphasize lines where a new
value is assigned to a variable.

69

LIST

TYPE Statement

FORMAT LIST [line number1] [TO I, I-Uine number2]]

ACTION Lists one or more program lines on the screen or other specified device.

line number must be in the range from 0 (zero) to 65529. line number1
is the first line to be listed. line number2 is the last line to be listed.

EXAMPLE

RESULT

NOTES

In the immediate mode:

1. LIST 10

2. LIST 10-50

3. LIST -50

4. LIST 50-

In the deferred (program) mode:

10: INPUT X: IF X= 1 THEN LIST 10-100

In the immediate mode:

1. Lists line 10.

2. Lists all lines numbered from 10 to 50 inclusive.

3. Lists all lines from the beginning of the program until line
50 inclusive.

4. Lists all lines from line 50 to the end of the program.

In the deferred (program) mode:

Lists all lines from line 10 to 100 inclusive, if the INPUT value at line 10 is
equal to 1.

• The listing (display) can be temporarily halted in the immediate mode
by pressing the CONTROL key followed by the letter C.

70

LOAD

TYPE File statement

FORMAT LOAD pathname

ACTION Reads a specified BASIC program from a disk file and stores it in memory.

EXAMPLE

COMMENTS

NOTES

1. LOAD .01 /Inventory

2. LOAD/ Accounting/Inventory

• The disk drive reference name consists of a period, the letter D,
and the drive number. .01 refers to the built-in disk drive .. 02, .03,
and .04 will refer to additional external disk drives.

• The volume name or the file name must be preceded by a slash (/).

• When a LOAD command is executed, the numeric variables are
automatically set to 0 (zero) and the string variables to null strings. All
files are closed with the exception of any EXEC file being executed.
Any program currently stored in memory is erased and replaced by the
new program.

• If an error is made, the following messages are displayed:
?UNDEF'D STATEMENT ERROR, if the specified line number does
not exist; ?TYPE MISMATCH ERROR, if the specified fi le is not a
BASIC program; ?FILE NOT FOUND ERROR, if the specified file
name does not exist.

71

LOCK

TYPE File statement

FORMAT LOCK pathname

ACTION Protects a file from being inadvertently deleted, changed, or renamed.

EXAMPLE

NOTES

The LOCK statement must be followed by the file or subdirectory name
you wish to lock.

LOCK/Purchases/Suppliers/France

• When listed by a CATALOG statement, locked files are shown with an
asterisk (*) to the left of their file type.

Type 8/ks Name

*BASIC 00003 TRANSACTIONS
*DATA
*FOTO

00015
00009

PHONE. NUMBERS
STATISTICS

• To protect all the files on a disk, a tab may be placed over the
write-protect cutout on the upper-right edge of the disk.

72

LOG stands for LOGARITHM

TYPE Numeric function

FORMAT LOG (arithmetic expression)

ACTION Returns the natural logarithm of arithmetic expression.

EXAMPLE

NOTES

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this
sets limits on the accuracy of the results returned by numeric functions.

1. numeric expression can be a numeric constant;

PRINT LOG (2)
PRINT LOG (6 - 2)

2. a numeric variable;

A=2:B=6
PRINT LOG (A)
PRINT LOG (B - A)

3. any valid combination thereof.

FOR J = 2 TO 6 STEP 2
PRINT LOG (J)
NEXT J

Returns .69314718
Returns 1.38629436

Returns .69314718
Returns 1.38629436

Returns .69314718
Returns 1.38629436
Returns 1.79175947

• arithmetic expression must be greater than 0 (zero): LOG (0) or LOG
(- 2) returns an " Illegal Quantity" error message. The natural logarithm
is the logarithm to the base e.

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, SGN, SQR, RND
CONV, CONV%, CONV&, CONV$
DEF FN

73

MID$ stands for MIDDLE

TYPE String function

FORMAT MID$ (string, starting position [,number of characters])

ACTION Returns the requested number of characters of a string expression,
starting at a specified character position.

EXAMPLE

NOTES

string is a string expression; MID$ is used to extract a section of string.
starting position is a numeric expression specifying the first (leftmost)
character in the substring; number of characters is a numeric expression
specifying the length of the substring.

1. string expression can be a string constant;

PRINT MID$ (':A.FTERNOON",6,4)
PRINT MID$ (':A.FTERNOON", 1 ,5)

2. a string variable;

A$ = ':A.FTERNOON"
PRINT MID$ (A$,6,4)
PRINT MID$ (A$, 1 ,5)

3. any valid combination thereof.

A$ = ':A.FTER" : A = 6
PRINT MID$ (A$+ "NOON",A,4)

Returns NOON
Returns AFTER

Returns NOON
Returns AFTER

Returns NOON

• The number of characters in a string expression may range from
0 (zero) to 255.

• A null string is a string that contains no characters.

• A string variable is identified by a dollar sign ($).

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

74

MOD stands for MODULO

TYPE Arithmetic operator

FORMAT numeric expression1 MOD numeric expression2

ACTION Returns the integer value that is the remainder of the integer division of
numeric expression 1 by numeric expression2.

EXAMPLE

NOTES

1. numeric expression can be a numeric constant;

PRINT 4 MOD 3
PRINT 27 MOD 4
PRINT 45 MOD 8

2. a numeric variable;
A = 4 : B = 3 : C = 27 : E = 8
PRINT A MOD B
PRINT C MOD A
PRINT 45 MOD E

3. or an arithmetic operation.
A= 27: B = 2
PRINT A MOD (B * B)

• Business BASIC has 9 arithmetic operators:

+ Unary plus

*

I
MOD

Unary minus
Exponentiation
Multiplication
Floating-point division
Modulo division

DIV Integer division
+ Addition

Subtraction

75

Returns 1
Returns 3
Returns 5

Returns 1
Returns 3
Returns 5

Returns 3

MULTIPLICATION

TYPE Arithmetic operator

FORMAT numeric expression 1 * numeric expression2

ACTION Performs an arithmetic multiplication.

EXAMPLE

NOTES

1. numeric expression can be a numeric constant;

PRINT 20 * 10
PRINT -20 * (-10)

2. a numeric variable;

A= 20: B = 10
PRINT A* B
PRINT -A* (-B)

3. any valid combination thereof.

A= 20: B = 10
PRINT A* 10
PRINT -20 *(-B)

• Business BASIC has 9 arithmetic operators:

+ Unary plus

*
I
MOD

Unary minus
Exponentiation
Multiplication
Floating-point division
Modulo division

DIV Integer division
+ Addition

Subtraction

76

symbol*

Returns 200
Returns 200

Returns 200
Returns 200

Returns 200
Returns 200

NEW

TYPE Statement

FORMAT NEW

ACTION Erases the program currently stored in memory, clears all variables,
and closes all open files.

EXAMPLE

RESULT

NOTES

10 GOSUB 1000
20 END

I
1000 REM *** Subroutine to enter new program
1010 INPUT "Do you want to erase the current program"; X$
1020 IF X$= "YES" THEN NEW: ELSE RETURN

Line 10: Unconditional transfer to line 1000.

20: Ends the program.

1000: Remarks to document program.

1010: Asks a question, accepts the input, and assigns it to the
variable X$.

1020: If the answer at 1010 is YES, the program will be erased;
otherwise, program execution will return to the next executable
statement following the last executed GOSUB.

• NEW may be used in the immediate (command) mode by typing NEW
and pressing the RETURN or ENTER key.

• When a program is loaded from a peripheral unit, the program stored
in the computer's memory is erased and replaced by the new one.

77

NEXT

TYPE Statement

FORMAT FOR control variable = aexpr1 TO aexpr2 [STEP aexpr3]

I
NEXT [control variable {, control variable }]

ACTION Sets up a program loop that repeats the series of instructions inside the
loop a given number of times.

EXAMPLE

RESULT

aexpr is an arithmetic expression. The loop begins with the FOR
statement and ends with the NEXT statement. Every statement in
between is executed once with each repetition. Every repetition
automatically increments (adds to) the value of control variable by a
value equal to aexpr3; if STEP is omitted, the default increment is 1.
control variable starts off having a value equal to aexpr1; when the
value of control variable reaches aexpr2, the loop is ended and program
execution continues with the statement after NEXT. A conditional
statement can be used to exit the loop before it is finished.

1 0 FOR B = 1 TO 1 0
20 PRINT ''AZ.";
30 NEXT B
40 END

Line 10: Sets up a loop to repeat 10 times.

20: Prints string AZ..

NOTES

30: Repeats from line 10.

• The initial value of control variable B has been incremented by the
default value of 1.

• A loop structure may contain other loops within it, provided that the
loops are nested.

78

NORMAL

TYPE Statement

FORMAT NORMAL

ACTION Resets the screen output in the normal mode.

EXAMPLE

RESULT

10 HOME
20 INVERSE
30 PRINT "BLACK characters on a WHITE background"
40 FORT= 1 TO 1000: NEXT T
50 NORMAL
60 PRINT "WHITE characters on a BLACK background"
70 END

Line 10: Clears the screen and sets the cursor to the upper-leftmost position.

20: Sets the inverse display mode.

NOTES

30: Displays the string:

BLACK characters on a WHITE background

40: Delay loop.

50: Restores the normal display mode.

60: Displays the string:

WHITE characters on a BLACK background

• No parameter is required after NORMAL.

• NORMAL may be used either in the immediate (command) mode by
typing NORMAL and pressing the RETURN or ENTER key, or in the
deferred (program) mode with a line number.

79

NOT

TYPE Logical operator

FORMAT NOT (expression)

ACTION Reverses the logical evaluation of an expression. The relational value of
a comparison between two expressions (numeric or string) is represented
by the numerical value of -1 if the relationship is true, and 0 (zero) if the
relationship is false.

EXAMPLE

RESULT

10 PRINT (100 < 50)
20 PRINT NOT (1 00 < 50}
30 END

Line 10: The logical expression (100 is less than 50) is evaluated to false;
prints 0 (zero).

NOTES

20: The logical expression (1 00 is less than 50) is evaluated to true since
NOT has reversed its logical evaluation; prints - 1.

• The strings are compared character by character, from left to right,
on the basis of their ASCII code numbers. The first character found in
one string that has a greater ASCII value than the character found
in the same position in the second string makes the first string greater.
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has three logical operators:

AND Conjunction
OR Inclusive disjunction
NOT Negation (logical complement)

80

NOT EQUAL TO symbol<> or ><
TYPE Relational operator

FORMAT expression1 <> expression2

ACTION Allows a logical comparison to be made between two expressions.

expression 1 and expression2 are either both numeric or both string.
The comparison returns a logical value. If expression 1 does not have
the same value as expression2, the result of the comparison is true
(non-zero, represented by the numerical value -1); otherwise, the result
is false (represented by the numerical value 0). Relational operators are
usually used in conditional statements, such as IF .. . THEN statements,
to make a decision regarding program flow.

EXAMPLE

RESULT

10 A = 10 : B = 20 : C = 2 : X$ = "TRUSTY" : Y$ = "TRUST"
20 IF A <> B THEN PRINT 'TRUE" : ELSE PRINT "FALSE"
30 IF A <> B/C THEN PRINT "TRUE" : ELSE PRINT "FALSE"
40 IF X$ <> THEN PRINT "TRUE" : ELSE PRINT "FALSE"

Line 10: Assigns values to the numeric variables A, B, C, and the string

NOTES

variables X$ and Y$.

20: Since A is not equal to B, prints: TRUE.

30: Since A is equal to B divided by C, prints : FALSE.

40: Since TRUSTY is not equal to TRUST, prints : TRUE.

• The strings are compared character by character, from left to right,
on the basis of their ASCII code numbers. The first character found in
one string that has greater ASCII value than the character found in
the same position in the second string makes the first string greater.
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has 6 relational operators:
Equal to

<>or>< Not equal to
> Greater than
>= or =>
<
<= or =<

Greater than or equal to
Less than
Less than or equal to

81

NOTRACE

TYPE Statement

FORMAT NOTRACE

ACTION Cancels the TRACE statement.

EXAMPLE

RESULT

NOTES

TRACE is used mainly to debug (check, troubleshoot) the sequential
execution of a program or parts of it. During program execution,
TRACE displays a number sign (#)followed by the line numbers of the
statements in the sequential order of their execution. After NOTRACE
is executed, the line numbers of executing program statements are not
displayed.

1. 10 A= 25
20 B =55
30 C = A+ B
40 PRINT C

TRACE

RUN

2. NOTRACE

RUN

1. The TRACE command will cause the following display:

#10 #20 #30 #40 80

2. The NOTRACE command will cancel the traced execution. Only the
result of the PRINT statement is displayed:

80

• NOTRACE may be used either in the immediate (command) mode or
in the deferred mode.

• Traced execution of assignment statements is denoted only by the
statements' line numbers. If the traced statement contains a PRINT
statement, TRACE displays the line number and the result of the
PRINT statement.

82

OFF EOF# stands for OFF and END OF FILE

TYPE File statement

FORMAT OFF EOF# file number

ACTION Cancels an ON EOF# statement.

EXAMPLE

NOTES

The ON EOF# statement allows program execution to branch to a
statement or statement list when execution continues past the end of
a specified file. After an OFF EOF# statement has been executed,
Business BASIC resumes displaying error messages and halting
execution when an end of file is reached, just as it did before the
ON EOF# statement was executed.

10 REM *** ON EOF# statement : File Copy Utility Program
20 INPUT "Type the source file name to be copied "; L$
30 OPEN#1 AS INPUT, L$
40 INPUT "Type the copy file name to print to"; L$
50 OPEN#2 AS OUTPUT, L$
60 ON EOF# 1 PRINT "Copy completed"
70 CLOSE
80 END
90 INPUT# 1 ; L$: PRINT #2; L$: GOTO 90

OFF EOF#1

• ON EOF# is very similar to the ON ERR statement, except
that ON EOF# recognizes only one error code. Unlike ON ERR,
you cannot use the RESUME statement with ON EOF# statements.

• If a program reads past the end of a file and ON EOF# is not in effect,
program execution halts and the ?OUT OF DATA ERROR message
is displayed.

83

OFF ERR stands for OFF and ERROR

TYPE Statement

FORMAT OFF ERR

ACTION Cancels the most recently executed ON ERR statement.

EXAMPLE

NOTES

ON ERR causes program execution to branch to a specified line number.
If an error occurs after an OFF ERR statement, program execution
stops and an error message is displayed.

10 ON ERR GOTO 70
20 DIM A (12)
30 FOR X = 1 TO 12 : READ A : NEXT X
40 GOTO 80
50 DATA 1,2,3,4, 5,6
60 END
70 IF ERR = 4 THEN RESUME 40
80 PRINT "Program execution continues"

OFF ERR

• OFF ERR may be used either in the immediate (command) mode or
in the deferred mode.

• OFF ERR has no parameters or options.

84

OFF KBD stands for OFF and KEYBOARD

TYPE Statement

FORMAT OFF KBD

ACTION Cancels the ON KBD statement.

EXAMPLE

NOTES

ON KBD causes program execution to branch to the line number specified
after the GOTO or GOSUB statements when any key is pressed.

10 ON KBD GOTO 100
20 GOTO 10

100 PRINT KBD
110 IF KBD = 65 THEN END
190 ON KBD GOTO 1 00
200 RETURN

OFF KBD

• OFF KBD may be used in the immediate (command) mode or in
the deferred mode.

• CONTROL-C cannot halt program execution when the ON KBD
statement is in effect. CONTROL-C is treated just like any other key.

85

ON EOF# stands for ON and END OF FILE

TYPE File statement

FORMAT ON EOF# file number I statement list

ACTION Allows program execution to branch to a statement or statement list when
execution continues past the end of a specified file.

EXAMPLE

10
20
30
40
50
60
70
80
90

RESULT

REM *** ON OEF# statement : File Copy Utility Program
INPUT "Type the source file name to be copied "; L$
OPEN#1 AS INPUT, L$
INPUT 'Type the copy file name to print to "; L$
OPEN#2 AS OUTPUT, L$
ON EOF#1 PRINT "Copy completed"
CLOSE
END
INPUT#1; L$: PRINT#2; L$: GOTO 90

Line 10: Documents program.

NOTES

20: Prints the message and assigns the source file name to the string
variable L$.

30: Opens the source file L$ as a read-only file whose reference
number is #1.

40: Prints the message and assigns the copy file name to the string
variable L$.

50: Opens the copy file L$ as a write-only file whose reference
number is #2.

60: Displays the string: "Copy completed" at the EOF of file #1.

70: Closes both files (#1 and #2).

90: Sets up a copying "loop". INPUT#1; L$ reads one line at a time from
source file #1 and assigns it to L$. PRINT#2; L$ prints line L$ to
copy file #2. GOTO 90 branches back to the beginning of line 90 until
the end of file #1 is reached.

• ON EOF# is very similar to the ON ERR statement, except
that ON EOF# recognizes only one error code. Unlike ON ERR,
you cannot use the RESUME statement with ON EOF# statements.

• If a program reads past the end of a file and ON EOF# is not in effect,
program execution halts and the ?OUT OF DATA ERROR message
is displayed.

86

ON ERR stands for ON and ERROR

TYPE Statement

FORMAT ON ERR statement

ACTION Causes program execution to branch to the specified line number.

EXAMPLE

RESULT

10 ON ERR GOTO 70
20 DIM A (12)
30 FOR X= 1 TO 12 : READ A: NEXT X
40 GOTO 80
50 DATA 1, 2, 3, 4, 5, 6
60 END
70 IF ERR = 4 THEN RESUME 40
80 PRINT "Program execution continues"

Line 1 0: If an error occurs, ON ERR causes an unconditional branching to
line 70.

NOTES

20: Dimensions a 12-element list.

50: Since the DATA statement contains only 6 data items, the
unconditional branching ON ERR GOTO 70 is executed.

70: Program execution resumes at line 40 (the code number of the
?OUT OF DATA ERROR is 4).

40: GOTO causes an unconditional branching to line 80.

80: Program execution continues at line 80.

• ON ERR is used only as a program statement. The ON ERR statement
should be placed at the beginning of a program.

• The error-handling subroutine statements must be free of errors, or
an endless and unstoppable loop may result. Error-handling
subroutines usually end with a RESUME statement.

• If a program contains more than one ON ERR statement, only the most
recently executed ON ERR statement will be used.

87

ON ••• GOSUB stands for ON, GO and SUBROUTINE

TYPE Statement

FORMAT ON arithmetic expression GOSUB line number {L line numberl}

ACTION Transfers program execution to one of several specified line numbers
depending on the value of arithmetic expression.

EXAMPLE

RESULT

ON ... GOSUB allows the program to choose one of several paths; this
is called "multiple branching:' If the value of arithmetic expression is 1,
the program jumps to the first line number in the list; if the value is 2 ,
the program jumps to the second line number in the list, and so on.
When a RETURN statement is next encountered (in the subroutine to
which program execution jumps), program execution will return to the next
executable statement after ON ... GOSUB.

10 INPUT X
20 ON X GOSUB 100, 200, 300 : END

I
100 PRINT "First line number in the list" : RETURN
200 PRINT "Second line number in the list" : RETURN
300 PRINT ''Third line number in the list" : RETURN

Line 10: Asks for input and assigns it to variable X.

NOTES

20: Sends program execution down on one of three branches: if X is 1,
jumps to line 1 00; if X is 2, jumps to line 200; if X is 3, jumps
to line 300.

• If the value of arithmetic expression is 0 (zero) or greater than 3,
program execution branches to the first line number in the list.

• arithmetic expression, which is rounded to an integer, must be in the
range from 0 (zero) to 255.

88

ON ••• GOTO

TYPE Statement

FORMAT ON arithmetic expression GOTO line number {L line numberl}

ACTION Transfers program execution to one of several specified line numbers
depending on the value of arithmetic expression.

EXAMPLE

RESULT

ON ... GOTO allows the program to choose one of several paths; this
is called "multiple branching:' If the value of arithmetic expression is 1,
the program jumps to the first line number in the list; if the value is 2,
the program jumps to the second line number in the list, and so on.

10 INPUT X
20 ON X GOTO 1 00, 200, 300

I
100 PRINT "First line number in the list" : END
200 PRINT "Second line number in the list" :END
300 PRINT "Third line number in the list" : END

Line 10: Asks for input and assigns it to variable X.

NOTES

20: Sends program execution down on one of three branches: if X is 1,
jumps to line 1 00; if X is 2, jumps to line 200; if X is 3, jumps
to line 300.

• If the value of arithmetic expression is 0 (zero) or greater than 3,
program execution branches to the first line number in the list.

• Each line number in the list following the ON ... GOTO statement must
be the first line number of the module you wish to branch to.

89

ON KBD stands for ON and KEYBOARD

TYPE Statement

FORMAT ON KBD statement

ACTION Causes program execution to branch to the line number specified after
the GOTO or GOSUB statements when any key is pressed.

EXAMPLE

RESULT

NOTES

10 ON KBD GOTO 100
20 GOTO 10

100 PRINT KBD
110 IF KBD = 65 THEN END
190 ON KBD GOTO 100
200 RETURN

Line 10: Program execution is transferred to line 100 when any key is
pressed.

100: Returns the ASCII code number of the key.

110: If the key struck is capital A (ASCII code number = 65), the END
statement is executed and program halts.

190: The ON KBD statement is re-enabled.

200: The RETURN statement branches program execution to the
statement following ON KBD, that is, line 20.

20: Unconditional transfer to line 10.

• The last statement of a subroutine to which program execution has
been transferred with ON KBD must always be a RETURN statement.

• The ON KBD statement must be re-enabled (executed) just before
the RETURN statement.

• CONTROL-C cannot halt program execution when the ON KBD
statement is in effect. CONTROL-C is treated just like any other key.

90

OPEN#

TYPE File statement

FORMAT OPEN# file number [AS INPUT\AS OUTPUT\AS EXTENSION),
path name [, record size]

ACTION Opens files for access.

EXAMPLE

COMMENTS

NOTES

Before a file can be accessed (used), it must be opened with an
OPEN# statement. All Input/Output statements referring to a file while it
is open must specify the same file reference number that has been used to
open the file by the OPEN# statement.

1. OPEN/Customers

2. 100 OPEN#1, "Customers"
200 OPEN#3, ')\ccounts"

3. 100 OPEN#1 AS EXTENSION, "Customers"
200 OPEN#? AS INPUT, ".Console"
300 OPEN#9 AS OUTPUT, ".Printer"

• In immediate mode, pathname need not be enclosed in quotation
marks.

• OPEN# must be followed by file number and pathname, separated by
a comma. pathname must be enclosed in quotation marks.

• The reserved words AS INPUT and AS OUTPUT specify that the file
is opened as a read-only or write-only file, respectively.

The AS EXTENSION option is used in sequential access to append
new information to an existing file.

A period must precede device names.

• file number may be any arithmetic expression from 1 to 10.

• Only up to 10 files may be opened at the same time.

• If an OPEN# statement contains a file reference number equal to
one presently in use, the first file using that file reference number
is automatically closed.

91

OR

TYPE Logical operator

FORMAT condition 1 OR condition2

ACTION Connects two or more conditions.

The expression evaluates as true (non-zero) if one of the conditions
is true; otherwise, it evaluates as false (zero). The result of the evaluation
is then usually used in conditional statements, such as IF ... THEN
statements, to make a decision regarding program flow.

EXAMPLE

RESULT

NOTES

10
20
30

40
50
60
70
80
90

A = 10 : B = 50: C = 100
IF A < B OR C = B THEN 40
PRINT "NEITHER OF THE TWO CONDITIONS HAS BEEN
MET": END
PRINT "ONE OF THE TWO CONDITIONS HAS BEEN MET"
A$ = ''A" : B$ = "B" : C$ = "B"
IF A$= B$ OR C$ <> B$ THEN 80
PRINT "ONE OF THE TWO CONDITIONS HAS BEEN MET" : END
PRINT "NEITHER OF THE TWO CONDITIONS HAS BEEN MET"
END

Line 40: One of the two conditions has been met since A is smaller than B;
the message on line 40 is printed:

ONE OF THE TWO CONDITIONS HAS BEEN MET

80: Neither of the conditions has been met since A$ = "!\' is different
from B$ = "B" and B$ = C$; the message on line 80 is printed:

NEITHER OF THE TWO CONDITIONS HAS BEEN MET

• The strings are compared character by character, from left to right,
on the basis of their ASCII code numbers. The first character found
in one string that has a greater ASCII value than the character found in
the same position in the second string makes the first string greater.
If the characters in the same positions are identical but one string's
current length is longer, the longer string is greater.

• Business BASIC has three logical operators:
AND Conjunction
OR Inclusive disjunction
NOT Negation (logical complement)

92

OUTPUT#

TYPE File statement

FORMAT OUTPUT# file number

ACTION Directs screen output to a specified file.

EXAMPLE

RESULT

NOTES

All PRINT, LIST, TRACE, and CATALOG statement output is sent to the
specified device file.

1. OUTPUT# 1

2. OUTPUT#¢

1. The file reference number following the OUTPUT# statement must be
identical to the file number specified in the OPEN# statement.

2. OUTPUT#¢ causes normal screen output to be resumed. Business
BASIC treats as a file any peripheral device that is connected to
your Apple. ¢ is the screen's file reference number.

• Error messages displayed with nonvalid OUTPUT# statements are:
?FILE NOT OPEN ERROR, if no file is open with the same reference
number; ?TYPE MISMATCH ERROR, if the specified file does not
accept characters.

• The TRACE statement should not be used to debug programs using
the OUTPUT# statement, unless you want the TRACE-generated line
numbers sent to the file.

93

OUTREC stands for OUT and RECORD

TYPE Reserved variable

FORMAT OUTREC = arithmetic expression

ACTION Contains the maximum length of lines output on a printer by the
LIST command.

EXAMPLE

RESULT

NOTES

OUTREC = 78

Printer starts a new line as soon as the specified column position (78, in
the example) assigned to OUTREC is reached.

• The value of OUTREC must be greater than the value of INDENT

94

PARENTHESES symbols (}

TYPE Operator

FORMAT (arithmetic expression {[arithmetic expression J})

ACTION Used to define the specific value that is currently being operated on.

EXAMPLE

RESULT

NOTES

A function operates on a value specified by arithmetic expression, which
is called the "argument" of the function. In expressions made up of
multiple operations, the order in which operations are performed can affect
the results. There is a standard (default) priority order, but enclosing
an operation in parentheses allows you to specify which operations you
want performed first.

1. PRINT FRE (0)

2. P = INT (X)

3. DIM D (14,6)

4. PRINT TAB (10); ':A.BCD"

5. PRINT SPC (Y); ':A.BCD"

6. C$ = CHR$ (65)

7. X = ((2 * 3 + 4 ' 2) * 2 +) * {32 - 4)

1-6. The arguments of a function are usually enclosed inside
parentheses.

7. The mathematical operations will be performed from left to right in
the following order: first, within pairs of parentheses in the order
the computer encounters them; and, within the parentheses, in
the priority order of the arithmetic operators. The result is 1260.

• The order of evaluation of arithmetic operators is:

1. () Parentheses 4. * Multiplication

2. + Unary plus I Floating-point division

Unary minus MOD Modulo division

3. ' Exponentiation DIV Integer division

5. + Addition

Subtraction

95

PERCENT symbol 0/o

TYPE Identifier

FORMAT variable name%

ACTION Identifies a numeric variable as being of the integer type.

EXAMPLE

RESULT

Variables have identifiers attached to specify which type of number
they represent. A variable without an identifier is automatically of the
single-precision type.

10 A= 4
20 B = 3
30 J% = A/B
40 PRINT "The answer as an integer value is ";J%

Line 10-20: Assigns values to variables A and B (single-precision type).

30: Sets the integer variable J% equal to A divided by B.

NOTES

40: Prints the message and the value of J%:

The answer as an integer value is 1 .

• When a higher precision value (such as the result of 4 divided by 3)
is assigned to a lower precision variable (such as J%), the number will
be rounded before being stored and displayed.

• Business BASIC has three identifiers attached to variable names:

& For variables of the long integer type
% For variables of the integer type
$ For variables of the string type

96

POP

TYPE Statement

FORMAT POP

ACTION Erases the return address of the last executed GOSUB statement.

EXAMPLE

RESULT

When a GOSUB statement is executed, the line number to which the
program will return after the next RETURN statement is saved on a
"stack"; since multiple GOSUB statements are possible, a RETURN
statement always returns the program to the statement after the last
executed GOSUB. POP "pops" the last return address off the stack;
a subsequent RETURN will return the program to the statement
following the next-to-last executed GOSUB.

10 GOSUB 100 : REM **" First GOSUB
20 PRINT "Statements following the first GOSUB"
30 END

I
100 GOSUB 120 : REM **" Second GOSUB
110 PRINT "Statements following the second GOSUB"
120 POP
130 RETURN
140 END

Line 10: Branches to the subroutine at line 1 00.

NOTES

100: Branches to the subroutine at line 120.

120: Pops the return address of the last GOSUB statement off the stack.

130: Returns to line 20.

20: Prints the string:

Statements following the first GOSUB

30: Ends the program.

• The result given in the example describes the order of execution of
the program example.

• POP is sometimes used (in command mode) in cases where a
subroutine has ended prematurely without executing a RETURN,
since the return address will otherwise be left on the top of the stack.

97

PREFIX$

TYPE File reserved variable

FORMAT PREFIX$ = "pathname prefix"

ACTION Contains a partial pathname.

EXAMPLE

COMMENTS

NOTES

Using the variable PREFIX$ allows you to locate a file without the
inconvenience of having to specify a complete pathname.

1. PREFIX$ = /Customers

2. PREFIX$= ".02"

• Prefix set to a volume name.

• Prefix set to a device name.

• The device name must be enclosed in quotation marks.

• The contents of the reserved variable PREFIX$ plus a local name as
entered through the keyboard by the user is assumed to be the
complete pathname of a file.

98

PRINT

TYPE Statement

FORMAT ? I PRINT I[, I ;][expression] }L I;]

ACTION Sends the output of a list of expressions to the screen.

EXAMPLE

RESULT

NOTES

list of expression may consist of numeric and/or string expressions,
separated by commas or semicolons.

1. N = 1 00 : PRINT N

2. A$ = '~BC" : PRINT A$

3. PRINT N,N

4. PRINT N;N

5. PRINT N$,N$

6. PRINT N$;N$

1. Prints the numeric variable value: 100.

2. Prints the string variable value: ABC.

3. When a comma separates two numeric variables, their values are
printed at pretabulated printing zones: 100 100.

4. When a semicolon separates two numeric variables, the two values are
printed with only one blank before and after each value: 1 00 100 .

5. When a comma separates two string variables, their values are printed
at pretabulated printing zones: ABC ABC.

6. A semicolon concatenates two strings: ABCABC.

• PRINT may be used in the immediate (command) mode by typing
PRINT and pressing the RETURN or ENTER key.

• Punctuation marks such as semicolons and commas may also be used
before and/or after expression.

99

PRINT#

TYPE File statement

FORMAT ?# I PRINT# file number[, record number]
[; expression [{; expression }][;ll

ACTION Writes data sequentially to files.

EXAMPLE

COMMENTS

NOTES

PRINT# writes a line of text for each expression in its list of expressions.

list of expressions may be numeric and/or string expressions.

PRINT#1, 32;C$(1, 1),LEFT$(C$(1, 1)),A&,A&/12,8%

• file number is specified following the number sign.

• record number following file number specifies where writing should
start.

• A comma separates file number from record number.

• A semicolon must separate record number from list of expressions.

• A comma must separate each expression or statement.

The variable and statement list following PRINT# in the above
example consists of:

-a subscripted string variable:
-a string statement:
-a long integer variable:
-an arithmetic expression:
-an integer variable:

C$(1,1)
LEFT$(C$(1, 1))
A&
A&/12
8%

• Before transferring the data from the expressions to the files, PRINT#
automatically performs any necessary numeric to string-type
conversions, similar to the STR$ function.

• The use of commas instead of semicolons is not recommended
because files have no tab positions. The SPC specification may be
used instead.

• A?# may replace the PRINT# keyword.

100

PRINT USING

TYPE Statement

FORMAT ? I PRINT USING line number I string I string variable;
[expression [{ , expression}]] [;]

ACTION Formats information output for screen display.

EXAMPLE

NOTES

Formatted information is controlled within printing fields. Printing fields are
defined by string format specifications. String format specifications
must be enclosed in quotation marks. Like any other string, a string
format specification may be assigned to a string variable.

PRINT USING "+.4#4E" ;1 .12345
PRINT USING "+.####4E";1.12345
PRINT USING "#.4#4E";1 .12345
PRINT USING "+.ZZZZ4E";1.12345

• A question mark (?) may replace the PRINT keyword.

• String format specifications may consist of:

Numeric signs
Dollar symbol
Characters
Letters
Delimiters
Repeat factor

+ or -
$
#, & or I
A, C, R, X or Z
, or;
(any positive integer from 1 to 255)

101

PRINT# USING

TYPE File statement

FORMAT ?# I PRINT# file number[, record number] USING line number
string I string variable [; expression [{, expression }]] [;]

ACTION Formats information output for screen display.

EXAMPLE

NOTES

Formatted information is controlled within printing fields. Printing fields are
defined by string format specifications. String format specifications
must be enclosed in quotation marks. Like any other string, a string
format specification may be assigned to a string variable.

PRINT# USING "+.4#4E";1 .12345
PRINT# USING "+ .####4E";1.12345
PRINT# USING "#.4#4E";1.12345
PRINT# USING "+ .ZZZZ4E";1.12345

• A?# may replace the PRINT# keyword.

• String format specifications may consist of:

Numeric signs
Dollar symbol
Characters
Letters
Delimiters
Repeat factor

+ or -
$
, & or I
A, C, R, X or Z
, or;
(any positive integer from 1 to 255)

102

READ

TYPE Statement

FORMAT READ variable {,variable }l

ACTION Reads the data items (string or numeric) contained in a DATA statement
and assigns them sequentially to the corresponding variables.

EXAMPLE

RESULT

variable is a numeric, a string, or an array variable. The variable type
must match the corresponding constant type in the DATA statement.
The information contained in multiple DATA statements is read as if it were
one continuous list. The READ statements access the DATA statements
in line number order.

10 FORD = 1 TO 3
20 READ X
30 PRINT X
40 NEXT D
50 DATA 10, 20, 30

Line 10: Sets up a loop to repeat three times.

NOTES

20: Reads a data item from the next DATA statement and assigns it to
variable X.

30: Prints the contents of variable X on the screen.

40: Repeats from line 1 0.

50: DATA statement containing three items.

The printed result would be:

10
20
30

• The READ and DATA statements work with both string and numeric
variables. String constants in DATA statements do not need to be
surrounded by quotation marks unless the string contains commas
or blanks. DATA statements may be placed anywhere in the program.

103

READ#

TYPE

FORMAT

ACTION

EXAMPLE

COMMENTS

NOTES

File statement

READ# file number [, record number][; variable [{, variable }J]

Reads data from a DATA file whose reference number is specified
following the number sign.

READ# gets a line of data for each variable in its variable list.

READ#1 , 32;A%,B&,C$

• record number following file number specifies where reading
should start.

• A comma separates file number from record number. record number
is assigned to the first variable in the list.

• A semicolon must separate record number from the variable list.
A comma must separate each variable.

The variable list following READ# consists of:

A% a real variable
B& a long integer variable
C$ a string variable

• READ# automatically performs any necessary type conversions for
numeric data. However, type conversions are not automatically
performed between numeric data and string variables (and vice versa).

104

REC stands for RECORD

TYPE File function

FORMAT REC (file number)

ACTION Returns the current record number of a specified file.

EXAMPLE

NOTES

file number, enclosed in parentheses, can be any arithmetic expression.

REC(6)

• If you use the INPUT# or READ# statements to access the catalog
of a directory, REC returns the number of the line currently being
accessed.

• Error messages displayed following nonvalid REC statements are:
?ILLEGAL QUANTITY ERROR, if the value of record number is not
between 1 and 1 0; ?FILE NOT OPEN ERROR, if the specified file
is not open.

105

REM stands for REMARK

TYPE Statement

FORMAT REM string

ACTION Allows insertion of remarks or comments to document program.

string may be any sequence of characters.

EXAMPLE

RESULT

10 REM ***The area of a circle is found by the formula :
20 REM *** c = PI * R A 2 : PI = 3.14159265
30 REM *** Variables used :
40 REM *** C For Circle
50 REM *** R For Radius
60 REM *** Written on By
70 INPUT R
80 C = 3.14159265 * R " 2: PRINT C
90 END

Line 10-60: Remarks to document program.

NOTES

70: Accepts input and assigns it to variable R.

80: Computes C and prints it on the screen.

• The REM statements are not executed. Strings following REM need
not be inside quotes. Any function or statement that follows REM
on the same line or before a colon is ignored.

• If program execution branches to a REM statement from a GOTO or
GOSUB statement, execution continues with the first executable
statement after the REM statement.

106

RENAME
TYPE

FORMAT

ACTION

EXAMPLE

RESULT

NOTES

File statement

RENAME pathname1, pathname2

Changes the names of volumes, subdirectories, or local files.

RENAME/Stock/Purchases/France, /Stock/Purchases/Foreign

The statement above causes local file
to be renamed
in the subdirectory
stored in the disk whose volume name is

France
Foreign
Purchases
Stock.

• RENAME cannot be used to create a file or subdirectory, only to
rename an existing one. To create new files and root directories,
you must use the CREATE statement.

• RENAME must be followed by old pathname, a comma, and
new path name.

107

RESTORE

TYPE Statement

FORMAT RESTORE

ACTION Allows the reuse of the same DATA by the READ statement.

After a RESTORE statement is executed, data associated with DATA
statements can be reread, starting with the first item in the first
DATA statement in the program.

EXAMPLE

RESULT

NOTES

10 FOR 8 = 1 TO 3
20 RESTORE
30 FORD = 1 TO 3
40 READ X
50 PRINT X,
60 NEXT D
70 PRINT
80 NEXT 8
90 DATA 10,20,30

Line 10: Sets up a loop to repeat three times.

20: Allows READ statement to reread DATA.

30: Sets up a loop to read three times.

40: Reads the next data item; assigns it to the variable X.

50: Prints the value of X, suppressing line feed.

60: Repeats from line 30.

70: Outputs a line feed.

80: Repeats from line 10.

90: DATA statement with three items.

The printed result would be:

10
10
10

20
20
20

30
30
30

• Each time the RESTORE statement is executed, the next READ
statement begins with the first data item in the first DATA statement in
the program.

108

RESUME

TYPE Statement

FORMAT RESUME

ACTION Resumes program execution at the beginning of the statement where
an error has occurred.

EXAMPLE

RESULT

NOTES

10 ON ERR GOTO 100
20 INPUT "Enter any integer from 1 through 6"; X
30 IF N = 9 THEN END
40 A = 12/N
50 PRINT A : GOTO 20

I
100 N = N + 1
110 RESUME
120 END

Line 10: Error-trapping statement: if an error occurs, jumps to line 100.

20: Asks for input and assigns it to variable N.

30: Ends program execution if variable N is assigned a 9.

40: Divides 12 by N.

If variable N was assigned a 0 (zero), an error would occur,
causing an unconditional jump to line 100.

50: Prints the value of A; jumps back to line 20.

100: Computes the new value of N.

110: Resumes program execution at line 40 where the "Division by Zero"
error originally occurred.

• ON ERR GOTO is used to avoid the display of the system's built-in
error messages and the subsequent halting of the program execution,
by jumping to an error-handling routine. RESUME is generally the
last statement of the error-handling routine.

109

RETURN
TYPE Statement

FORMAT GOSUB line number

I
RETURN

ACTION Transfers program execution to the next executable statement after the
last executed GOSUB statement.

EXAMPLE

RESULT

NOTES

GOSUB is used to set up subroutines that can be used more than once
by various parts of the program. The subroutine consists of the
statements between line number and RETURN. More than one GOSUB
statement can be executed consecutively.

10 PRINT "Type C to Continue, E to End:'
20 INPUT C$
30 IF C$ = "C" THEN GOSUB 1 000 : END
40 IF C$ = "E" THEN END
50 PRINT "Invalid entry. Try again ." : GOTO 10
60 END

1000 REM *** SUBROUTINE

I
2000 RETURN

Line 1 0: Prints the message.

20: Accepts input and assigns it to variable C$.

30: If C is typed, program execution passes to the subroutine at
line 1000.

40: If E is typed, ends the program.

50: If any other character is typed, prints the message and jumps
back to line 10.

60: Ends the program.

1000: Start of the subroutine.

2000: Returns program execution to the next statement following the
most recently executed GOSUB statement.

• A subroutine must always end with a RETURN statement to cause
program execution to continue from the next statement following the
GOSUB statement.

110

RIGHT$

TYPE String function

FORMAT PRINT RIGHT$ (string expression, number of characters)

ACTION Returns the rightmost number of characters of string expression.

EXAMPLE

NOTES

1. string expression can be a string constant;

PRINT RIGHT$ (':AFTERNOON" ,3)
PRINT RIGHT$ (':A.FTERNOON",4)

2. a string variable;

A$ = ':AFTERNOON"
PRINT RIGHT$ (A$,3)
PRINT RIGHT$ (A$,4)

3. any valid combination thereof.

A$ = ':AFTER" : A = 4
PRINT RIGHT$ (A$+ "NOON",A)

Returns OON
Returns NOON

Returns OON
Returns NOON

Returns NOON

• If number of characters is greater than the total length of string
expression, the entire string is returned.

• If number of characters = 0 (zero), the null string (" ") is returned.

• The number of characters in a string expression may range from
0 (zero) to 255.

• A string variable is identified by a dollar sign ($).

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

111

RND

TYPE

FORMAT

ACTION

EXAMPLE

RESULT

stands for RANDOM

Numeric function

RND (arithmetic expression)

Returns a random number between 0 (zero) and 1.

arithmetic expression can be a numeric constant, a numeric variable,
or an arithmetic operation. The returned sequence of random numbers
varies depending on arithmetic expression's value:

1. With a 0 (zero) as an argument value, RND returns a random real
positive number less than 1.

2. With an argument value greater than 0 (zero), RND will return a
different number each time it is used.

3. With a negative argument value, RND will re!urn the same number
each time the same argument is used.

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

10 FOR J = 1 TO 5
20 PRINT RND (~)
30 NEXT J
40 END

Line 10: Sets up a loop to repeat five times.

NOTES

20: Prints a random number between 0 (zero) and 1.

30: Repeats from line 10.

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR
CON\/, CONV%, CONV&, CONV$
DEF FN

112

RUN
TYPE Statement

FORMAT 1. RUN [line number J

ACTION

EXAMPLE

RESULT

2. RUN file name, [line number J

1. Executes the current program stored in memory, beginning with
line number if specified.

2. Loads and executes the program specified by file name , beginning
with line number if specified.

10 INPUT Q$
20 IF Q$ = "YES" THEN RUN : END
30 RUN "PAYROLL:'
40 END

Line 10: Accepts input and assigns it to the string variable Q$.

NOTES

20 : If the string entered at line 1 0 is YES, program execution starts with
the first line number (lowest).

30: Loads and runs the program PAYROLL if the string entered at
line 10 is different from YES. Execution starts with the first line of
the program.

• RUN may be used in the immediate (command) mode by typing RUN
and pressing the RETURN or ENTER key.

• If the line number specified after the statement RUN does not exist
in the program, an error message is displayed.

• RUN reinitializes all numeric variables to 0 (zero) and string variables
to null , clears all pointers and stacks, and closes all files.

113

SAVE

TYPE File statement

FORMAT SAVE file name

ACTION Writes a copy of the program currently in memory to a disk.

EXAMPLE

COMMENTS

NOTES

This copy is called a BASIC program file.

SAVE .01 /Inventory

• The disk drive reference name consists of a period, the letter D,
and the drive number .. 01 refers to the built-in disk drive .. 02, .03, and
.04 will refer to additional external disk drives.

• file name must be preceded with a slash (/).

• Saving a file on a disk that already contains a BASIC program with the
same file name causes the erasure of the old file.

• If an error is made, the following messages are displayed: ?FILE
LOCKED ERROR, if you try to save a file with the same file name as
a locked BASIC program; ?TYPE MISMATCH ERROR, if you try to
save a file with the same file name but which is not a BASIC program.

114

SCALE

TYPE Statement

FORMAT SCALE (arithmetic expression, variable)

ACTION Shifts the decimal point of a displayed value to the left or right of the
original position.

arithmetic expression indicates the number of places and the direction in
which the decimal point should be moved. arithmetic expression may be
any positive or negative integer from -128 to 127. If arithmetic expression
is positive, the decimal point is moved to the right. If negative, the
decimal point is moved to the left. variable represents the actual numeric
value to be displayed.

EXAMPLE

1 0 A& = 12345678901234567
20 PRINT USING "20&";SCALE(-3,A&)

RESULT

NOTES

Line 10: Sets A& equal to the long integer value on the right of the equal sign.

20: Displays the value of A& according to the string format specification
(20&) and the SCALE statement (-3,A&):

12,345,678,901 ,235

• A SCALE statement may be used with a PRINT[#] USING statement.

• The resulting exponent of the value must be between -99 and +99,
or an ?ILLEGAL QUANTITY ERROR occurs.

115

SG N stands for SIGN

TYPE Numeric function

FORMAT SGN (arithmetic expression)

ACTION Returns the sign of arithmetic expression.

EXAMPLE

NOTES

The function SGN is called the signum function. It returns -1 if the
expression is negative; 0 (zero) if the expression is equal to 0 (zero);
and 1 if the expression is positive.

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this
sets limits on the accuracy of the results returned by numeric functions.

1. arithmetic expression can be a numeric constant;

PRINT SGN (0)
PRINT SGN (1 0)
PRINT SGN (-10)

2. a numeric variable;

A = 0: B = 10 : C = - 10
PRINT SGN (A)
PRINT SGN (B)
PRINT SGN (C)

3. an arithmetic operation.

A = 0: B = 10: C = - 10
PRINT SGN (B + C)
PRINT SGN (A " 2 + B " 2)
PRINT SGN (A + (C " 2))

Returns 0
Returns 1
Returns - 1

Returns 0
Returns 1
Returns -1

Returns 0
Returns 1
Returns -1

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion :
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, AND, SGN, SQR
CONV, CONV%, CONV&, CONV$
DEF FN

116

SIN stands for SINE

TYPE Numeric function

FORMAT SIN (arithmetic expression)

ACTION Returns the sine of arithmetic expression.

EXAMPLE

RESULT

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

1 0 REM *** H = Hypotenuse of angle A
20 REM *** OS = Opposite side of angle A
30 REM *** A = Angle of a right triangle
40 FOR J = 1 TO 3
50 PRINT SIN (J)
60 NEXT J
70 END

Line 10-30: Remarks to document program.

NOTES

40: Sets up a loop to repeat three times.

50: Print the sine of J:

.841470985 for J = 1 (radian)

.909297427 for J = 2 (radians)

.141120008 for J = 3 (radians)

60: Repeats from line 40.

• SIN is the opposite of ARCSIN. SIN (A) = OS/H

• Conversions:

Radian = Degree I 57.29577951
Degree = Radian * 57.29577951

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ASS, EXP, INT, LOG, AND, SGN, SQR
CONV, CONV%, CONV&, CONV$
DEF FN

117

SPC stands for SPACE

TYPE Function

FORMAT SPC (arithmetic expression)

ACTION Inserts the requested number of spaces between two screen printing
positions.

EXAMPLE

1. arithmetic expression can be a numeric constant;

PRINT ':A.B" SPC(5) "CD" Inserts 5 spaces between
the two strings : AB

PRINT ':A.B" SPC(7) "CD" Inserts 7 spaces between
the two strings : AB

2. a numeric variable;

A = 5:B = 7
PRINT ':A.B" SPC(A) "CD"

PRINT ':A.B" SPC(B) "CD"

3. any valid combination thereof.

10 FOR J = 1 TO 4

Inserts 5 spaces between
the two strings : AB
Inserts 7 spaces between
the two strings: AB

CD

CD

CD

CD

20 PRINT " * " SPC(J) " * "

30 NEXT J Inserts J spaces between the asterisks
at each subsequent line:

* * J = 1
* * J = 2
* * J = 3
* * J = 4

NOTES

• The arithmetic expression must be in the range from 0 (zero) to 255.

118

SQR stands for SQUARE ROOT

TYPE Numeric function

FORMAT SQR (arithmetic expression)

ACTION Returns the square root of arithmetic expression.

EXAMPLE

NOTES

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

1. arithmetic expression can be a numeric constant;

PRINT SQR (0) Returns 0
PRINT SQR (1 0) Returns 3.16227766

2. a numeric variable;

A = 0 : B = 10
PRINT SQR (A)
PRINT SQR (B)

3. an arithmetic operation.

A = 0 : B = 10
PRINT SQR (A + (2 * 5) * B)
PRINT SQR (A • 2 + B • 2)
PRINT SQR (B • B)

• arithmetic expression must be positive.

Returns 0
Returns 3.16227766

Returns 10
Returns 10
Returns 100000

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR
CON\/, CONV%, CONV&, CONV$
DEF FN

119

STEP

TYPE Clause

FORMAT FOR control variable = aexpr1 TO aexpr2 [STEP aexpr3]

I
NEXT [control variable { , control variable }l

ACTION FOR ... NEXT sets up a program loop that repeats the series of
instructions inside the loop a given number of times.

EXAMPLE

RESULT

aexpr is an arithmetic expression. The loop begins with the FOR
statement and ends with the NEXT statement. Every statement in
between is executed once with each repetition. Every repetition
automatically increments (adds to) the value of control variable by a
value equal to aexpr3; if STEP is omitted, the default increment is 1.
control variable starts off having a value equal to aexpr1 ; when the value
of control variable reaches aexpr2 , the loop is ended and program
execution continues with the statement after NEXT. A conditional
statement can be
used to exit the loop before it is finished.

10 FORB = 10 TO 140 STEP 10
20 PRINT ''AZ" ;
30 NEXT B
40 END

Line 10: Sets up a loop to repeat 14 times.

NOTES

20: Prints the string AZ.

30: Repeats from line 1 0.

• The initial value of control variable B has been incremented by the
STEP value of 1 0.

• A loop structure may contain other loops within it, provided that the
loops are nested.

120

STOP

TYPE Statement

FORMAT STOP

ACTION Halts program execution and returns to command (keyboard) level.

EXAMPLE

RESULT

10 PRINT "This program starts at line number 1 0"

20 STOP
30 PRINT "Execution continues with this statement"

Line 10: Prints the string:

NOTES

This program starts at line number 1 0

20: The STOP statement temporarily halts program execution and
causes the following message to be displayed:

BREAK IN 20

(that is, in line number 20)

Typing CONT on the keyboard and pressing the RETURN key causes
execution to continue with the next instruction following the STOP
statement.

30: Prints the string:

Execution continues with this statement

• Program execution can also be temporarily halted by pressing the
CONTROL key followed by the letter C. Unlike the END statement,
the STOP statement does not close files.

• STOP statements may be used anywhere in a program.

121

STR$ stands for STRING

TYPE String function

FORMAT STR$ (arithmetic expression)

ACTION Returns a representation of arithmetic expression in string form.

EXAMPLE

NOTES

If arithmetic expression is positive, the returned string contains a leading
blank-the space reserved for the plus (+) sign.

1. arithmetic expression can be a numeric constant;

PRINT STR$ (12345) Returns 12345
PRINT STR$ (123.45) Returns 123.45

2. a numeric variable;

A = 12345 : B = 123.45
PRINT STR$ (A) Returns 12345
PRINT STR$ (B) Returns 123.45

3. any valid combination thereof.

A= 12345: B = 123.45
PRINT STR$ (A + B) Returns 12468.45

• Conversion of an arithmetic expression into a string expression
permits manipulation by the available string functions.

Example:

A = 123456789 : A$ = STR$ (A)

PRINT LEFT$ (A$,4)
PRINT RIGHT$ (A$,5)

Returns 1234
Returns 56789

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

122

SU 8$ stands for SUBSTRING

TYPE String function

FORMAT SUB$ (string expression, arithmetic expression[, arithmetic expression])
= string expression

ACTION

EXAMPLE

RESULT

Replaces any part of a string expression with a substring starting at a
specified position.

string expression may be a string constant or a string variable.

10 A$ = ''ARITHMETIC EXPRESSIONS"
20 B$ = "COMPUTATION"
30 SUB$ (A$, 12) = B$
40 PRINT A$
50 END

Line 10: A string is assigned to string variable A$.

NOTES

20: A substring is assigned to string variable B$.

30: Replaces part of string expression A$ starting at character position 12
by substring B$.

40: Prints the new value of the string variable A$:

ARITHMETIC COMPUTATION

• The dollar sign ($) is an identifier that defines a function or a variable
name as being of the string type.

• You may optionally include a second arithmetic expression to specify
the number of characters in the substring to replace characters in the
original string.

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

123

SUBTRACTION

TYPE Arithmetic operator

FORMAT numeric expression 1 - numeric expression2

ACTION Performs an arithmetic subtraction.

EXAMPLE

NOTES

1. numeric expression can be a numeric constant;

PRINT 20- 10
PRINT 20 - 10 - 5
PRINT 20- 25

2. a numeric variable;

A = 20 : B = 10 : C = 5 : D = 25
PRINT A- B
PRINT A-B-C
PRINT A-D

3. any valid combination thereof.

A = 20 : B = 1 0 : C = 5 : D = 25
PRINT A- 10
PRINT 20 - B - C
PRINT A-D

• Business BASIC has 9 arithmetic operators:

+ Unary plus

*

I
MOD

Unary minus
Exponentiation
Multiplication
Floating-point division
Modulo division

DIV Integer division
+ Addition

Subtraction

124

symbol-

Returns 10
Returns 5
Returns -5

Returns 10
Returns 5
Returns - 5

Returns 10
Returns 5
Returns - 5

SWAP

TYPE Statement

FORMAT SWAP variab/e1 , variab/e2

ACTION Exchanges the values of two variables of the same type.

Any type of variable may be SWAPped (real, integer, long integer, string),
but the two variables must be of the same type.

EXAMPLE

RESULT

NOTES

10 READ X,Y
20 PRINT X,Y
30 IF X < Y THEN SWAP X,Y
40 PRINT X,Y
50 DATA 4,7
60 END

Line 10: Reads and assigns the DATA values 4 and 7 to the variables X andY,
respectively.

20: Prints the values : 4 7.

30: The condition being true (X = 4 is smaller than Y = 7), the "swapping"
of the two values will be executed: 4 will be stored in variable Y, and 7
will be stored in variable X.

40: Prints the new values : 7 4.

• The SWAP statement is very useful in sorting operations.

125

TAB stands for TABULATOR

TYPE Function

FORMAT TAB (arithmetic expression)

ACTION Spaces to the specified absolute position from the leftmost printing
position.

EXAMPLE

NOTES

arithmetic expression must be in the range from 1 to 255. (1 is the leftmost
printing position on the screen.) If the current printing position is already
beyond arithmetic expression, TAB is ignored.

1. arithmetic expression can be a numeric constant;

PRINT TAB (5) ''AB" Spaces to the fifth position
before printing AB

PRINT TAB (7) ''AB" Spaces to the seventh position
before printing AB

2. a numeric variable;
A=5:B=7
PRINT TAB (A) ''AB"

PRINT TAB (B) ''AB"

3. any valid combination thereof.

1 0 FOR J = 1 TO 4
20 PRINT TAB (J) " *"
30 NEXT J

*

*
*

J = 1
J = 2
J = 3

* J = 4

Spaces to the fifth position
before printing AB
Spaces to the seventh position
before printing AB

Spaces to the Jth position
before printing the asterisk
at each subsequent line:

• The TAB function is generally used with the PRINT statement to line
up information in columns.

126

TAN stands for TANGENT

TYPE Numeric function

FORMAT TAN (arithmetic expression)

ACTION Returns the tangent of arithmetic expression.

EXAMPLE

RESULT

Numeric functions may be used either in immediate mode in conjunction
with a PRINT statement or in deferred execution. The argument to all
numeric functions must be an arithmetic expression. All floating-point
arithmetic in Business BASIC is done with 32-bit precision, and this sets
limits on the accuracy of the results returned by numeric functions.

1 0 REM *** OS = Side opposite to angle A
20 REM *** AS = Side adjacent to angle A
30 REM *** A = Angle of a right triangle
40 FOR J = 1 TO 3
50 PRINT TAN (J)
60 NEXT J
70 END

Line 30: Remarks to document program.

NOTES

40 : Sets up a loop to repeat three times.

50: Prints the tangent of J:

1.55740772 for J = 1 (radian)
-.218503987 for J = 2 (radians)
- .142546543 for J = 3 (radians)

60: Repeats from line 40.

• ARCTAN is the opposite of TAN. TAN (A) = OS/ AS

• Conversions:

Radian = Degree I 57.29577951
Degree = Radian * 57.29577951

• Business BASIC has 16 numeric functions in the following type
categories:

trigonometric:
arithmetic:
conversion:
user-defined:

ATN, COS, SIN, TAN
ABS, EXP, INT, LOG, RND, SGN, SQR
CONV, CONV%, CONV&, CONV$
DEF FN

127

TEN

TYPE String function

FORMAT TEN (string expression)

ACTION Returns the decimal equivalent of a hexadecimal value.

The last four characters of string expression must represent a
hexadecimal value.

Example : PRINT TEN("conversion of the hexadecimal value CCCC")

will return: - 131 08, the last four characters ecce representing a
hexadecimal value.

EXAMPLE

10 DIM H$ (15)
20 FOR J = 1 TO 15
30 READ H$ (J)
40 PRINT TEN (H$(J)),
50 NEXT J
60 DATA "~~~1", "¢~¢2", "¢~~3" , "~~~4", "~~~5", "¢~¢6"
70 DATA "~¢~7", "'0008", "~0~9", "000/\', "¢00B", "~~¢C"
80 DATA "¢¢~D" , "¢¢~E" , "0¢0F"
90 END

RESULT

NOTES

Line 10: Dimensions a list of 15 elements.

20: Sets up a loop to repeat 15 times.

30: Reads 15 data items.

40: Prints the decimal equivalent of hexadecimal values :

1
7

2
8

3
9

50: Repeats from line 20.

4
10

5
11

6
12

• The returned decimal value is in the range from - 32768 to + 32767.

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

128

THEN

TYPE Statement

FORMAT IF logical expression THEN line number I statement list [: ELSE
line number I statement list l

ACTION Sends program execution to line number or executes statement list
following THEN if logical expression is true (non-zero); otherwise:

1. if no ELSE clause is used, program execution passes to the next line
in sequence;

2. if the ELSE clause is used, program execution passes to line number
or statement list following ELSE.

IF .. . THEN is called a conditional statement; it is one of the most
commonly used statements in BASIC. It redirects program execution on
the basis of the truth or falsity of logical expression. logical expression
is usually a relational expression, comparing two values with relational
operators.

EXAMPLE

RESULT

NOTES

10 INPUT "YES OR NO";X$
20 IF X$ = "YES" THEN 40
30 IF X$ = "NO" THEN 50 : ELSE 10
40 PRINT "Program execution is transferred to line 40" : END
50 PRINT "Program execution is transferred to line 50"

Line 10: Asks for input; assigns the response to the variable X$.

20: If X$ is YES, program execution jumps to line 40.

30: If X$ is NO, execution jumps to line 50; otherwise, the statement
following ELSE is executed.

40: Prints the message. Ends the program.

50: Prints the message.

• The ELSE clause cannot be on a separate program line.

129

TO

TYPE Statement

FORMAT FOR control variable = aexpr1 TO aexpr2 [STEP aexpr3]

I
NEXT [control variable {, control variable }l

ACTION Sets up a program loop that repeats the series of instructions inside
the loop a given number of times.

EXAMPLE

RESULT

aexpr is an arithmetic expression. The loop begins with the FOR
statement and ends with the NEXT statement. Every instruction in
between is executed once with each repetition. Every repetition
automatically increments (adds to) the value of control variable by a
value equal to aexpr3; if STEP is omitted, the default increment is 1.
control variable starts off having a value equal to aexpr1 ; when the value
of control variable reaches aexpr2, the loop is ended and program
execution continues with the statement after NEXT. A conditional
statement can be used to exit the loop before it is finished.

10 FORB = 1 TO 10
20 PRINT ''AZ";
30 NEXT B
40 END

Line 10: Sets up a loop to repeat 10 times.

20: Prints the string AZ.

NOTES

30: Repeats from line 10.

• The initial value of control variable B has been incremented by the
default value of 1 .

• A loop structure may contain other loops within it, provided that the
loops are nested.

130

TRACE

TYPE Command

FORMAT TRACE

ACTION Used mainly to debug (check, troubleshoot) the sequential execution of
a program or parts of it.

EXAMPLE

RESULT

NOTES

During program execution, TRACE displays a number sign (#)followed
by the line numbers of the statements in the sequential order of their
execution. Assignment statements are reported only by their line numbers.
When a PRINT statement is encountered, TRACE displays the line
number and the result of the PRINT statement.

10 A = 25
20 8 = 55
30 C = A + B
40 PRINT C

TRACE

RUN

#10 #20 #40 80

• TRACE may be used either in the immediate (command) mode or
in the deferred mode.

• Traced execution of assignment statements is denoted only by the
statements' line numbers. If the traced statement contains a PRINT
statement, TRACE displays the line number and the result of the
PRINT statement.

• TRACE is switched off by "rebooting," LOAD pathname, RUN
pathname, or by typing NOTRACE. The RUN command/statement
not followed by a pathname or CHAIN does not cancel TRACE.

131

TVP stands for TYPE (OF DATA)

TYPE File function

FORMAT TYP (file number)

ACTION Determines what type of data will be read from a particular file on the next
access to that file .

EXAMPLE

RESULT

NOTES

file number, enclosed in parentheses, can be any arithmetic expression.

1. TYP (6)

2. ON TYP (6) GOSUB 1000, 2000, 3000, 4000, 5000

1. The number returned by the TYP function denotes what type of data
will next be read from the file whose file number is 6.

2. Depending on the number returned by the TYP function, program
execution will branch to one of the line numbers following the GOSUB
statement.

• For a DATA file, TYP returns the following numbers:

1 For real
2 For integer
3 For long integer
4 For string
fO Indicates that the file is indeterminate

For a TEXT file, TYP returns the value 8. Number 5 indicates an
end-of-file marker, whether it is a data or text type file .

• Error messages displayed with nonvalid TYP statements are:
?ILLEGAL QUANTITY ERROR, if file number is not between 1 and 1 0;
?FILE NOT OPEN ERROR, if the specified file is not open.

132

UNLOCK

TYPE File statement

FORMAT UNLOCK pathname

ACTION Unlocks files previously protected (locked) by a LOCK statement.

EXAMPLE

NOTES

A locked file may again be deleted, changed, renamed, or saved after it
is unlocked by the UNLOCK statement. UNLOCK must be followed by
the file or subdirectory name you wish to unlock.

UNLOCK/Purchases/Suppliers/France

• When listed by a CATALOG statement, unlocked files are shown
without the asterisk (*)that had previously appeared to the left of their
file type, after a LOCK command has been executed.

Type Blks Name

BASIC 00003 TRANSACTIONS
DATA
FOTO

00015
00009

PHONE. NUMBERS
STATISTICS

133

VAL stands for VALUE

TYPE String function

FORMAT VAL (string expression)

ACTION Returns the numerical value of string expression.

EXAMPLE

NOTES

string expression should evaluate to a string representing a number. VAL
converts the string into the number it represents. If string expression is
not numeric, VAL will return a 0 (zero).

1. string expression can be a string constant;

PRINT VAL ("12345")
PRINT VAL ("123.45")

2. a string variable;

A$ = "12345" : B$ = "123.45"
PRINT VAL (A$)
PRINT VAL (B$)

3. any valid combination thereof.

A$= "123" : B$ = ".45"
PRINT VAL (A$ + B$)

Returns 12345
Returns 123.45

Returns 12345
Returns 123.45

Returns 123.45

• Conversion of a string expression into a numeric expression permits
subsequent arithmetic operations.

Example:

A$ = "123.45" :A =VAL (A$)
PRINT INT (A)
PRINT SIN (INT(A))

Returns 123
Returns - .459903491

• Business BASIC has 12 string or string-related functions: ASC, CHR$,
HEX$, INSTR, LEFT$, LEN, MID$, RIGHT$, STR$, SUB$, TEN, VAL.

134

VPOS stands for VERTICAL and POSITION

TYPE Reserved variable

FORMAT VPOS = arithmetic expression

ACTION Specifies the vertical position of the cursor within a "window" or total
screen.

EXAMPLE

NOTES

A PRINT VPOS statement returns the current vertical position of the
cursor. The position is relative to the upper margin of the window or total
screen. arithmetic expression can be any integer constant or variable or
any real arithmetic expression.

VPOS = 6

moves the cursor vertically to the sixth line within the current window.

• All parameters are relative to the current window dimensions. For
instance, in VPOS = 1, 1 specifies the first line within the current
window.

• When VPOS is used to move the cursor vertically, the cursor's
horizontal position is not affected.

• Values must be within the range from 0 (zero) to 255. A value of
0 (zero) is automatically converted to a value of 1. VPOS cannot move
the cursor to a position outside of the window. VPOS values greater
than the height of the window cause the cursor to move to the bottom
line of the window.

135

WINDOW

TYPE

FORMAT

ACTION

EXAMPLE

COMMENTS

NOTES

Statement

WINDOW aexpres 1, aexpres2 TO aexpres3, aexpres4

Sets the position and size of the "window" (any square or rectangle area
within the total screen) where text is displayed.

aexpres is an arithmetic expression specified by a numeric constant,
a numeric variable, or an arithmetic computation. aexpres1 and aexpres2
specify the upper-left corner. aexpres3 and aexpres4 following the word
TO specify the lower-right corner of the window.

100 WINDOW 6,9 TO 16,19

• 6 is the horizontal coordinate (column 6).

• 9 is the vertical coordinate (row 9) of the upper-left corner of the
window.

• 16 is the horizontal coordinate (column 16).

• 19 is the vertical coordinate (row 19) of the lower-right corner of the
window.

• When a WINDOW statement is executed, the cursor moves to the
lower-left corner of the specified window. (The HOME command
moves it to the upper-left corner.)

• A coordinate value of 0 (zero) is automatically converted to a value
of 1. Each value must be within the range from 0 (zero) to 255.

• The parameter values are relative to the limits of the screen. The size
of the window cannot exceed that of the screen, namely, 80 columns
by 24 lines.

136

WRITE#

TYPE

FORMAT

ACTION

EXAMPLE

COMMENTS

NOTES

File statement

WRITE# file number[, record number] [;expression [{, expression }ll

Writes sequentially the value of each expression in its expression list to a
field in a data file whose reference number is specified following the
number sign.

WRITE# writes one line of data for each expression in the expression list.

WRITE#1 ,32;A%,B&,C$

• record number following file number specifies where writing should
start. The value of the first expression is written to the first field in the
specified record. If no record number is specified, records are written
sequentially.

• A comma separates file number from record number.

• A semicolon must separate record number from the variable list.

• A comma must separate each expression.

• WRITE# performs no numeric to string-type conversions while
transferring information from expressions to the file; it just writes
a binary image of numeric data to the file.

• An integer is written as an integer only if an integer variable is
specified. If the integer is part of an arithmetic expression, the
expression value will be written as a real number.

137

Index of Symbols

The following is an index of valid symbols and their references in the guide.

FOR

Arithmetic
Operators

+
I

*

()

Delimiters

Identifiers

&
$
o;o

Relational
Operators

Plus sign
Slash
Caret
Asterisk
Parentheses
Minus sign

Colon
Comma
Semicolon

Long integer type
String type
Integer type

SEE

ADDITION
DIVISION
EXPONENTIATION
MULTIPLICATION
PARENTHESES
SUBTRACTION

COLON
PRINT
PRINT

AMPERSAND
DOLLAR
PERCENT

Equal sign EQUAL TO
> Greater than sign GREATER THAN
> = or = > Greater than or equal to GREATER THAN OR EQUAL TO
< Less than sign LESS THAN
< = or = < Less than or equal to LESS THAN OR EQUAL TO
<> or >< Not equal to NOT EQUAL TO

Miscellaneous

+
?

Equal sign
Plus sign
Question mark

ASSIGNMENT
CONCATENATION
PRINT

139

Index of Keywords by Function

The following is an index of all keywords in the guide grouped by function .

Arithmetic Functions

ABS
EXP
INT
LOG
RND
SGN
SQR

Arithmetic Operators

Addition
DIV
Division
E
Exponentiation
MOD
Multiplication
Parentheses
Subtraction

Array Statement

DIM

Assignment Statements

LET
SWAP

Conditional Branching
Statements

ELSE
IF GOTO
IF THEN
OFF KBD
ON GOSUB
ON GOTO
ON KBD

141

File Statements
and Functions

AS EXTENSION
AS INPUT
AS OUTPUT
CATALOG
CLOSE
CLOSE#
CREATE
DELETE
EXEC
INPUT#
LOCK
OFF EOF#
ON EOF#
OPEN#
OUTPUT#
PRINT#
PRINT# USING
READ#
REC
RENAME
TYP
UNLOCK
WRITE#

Formatted Output Statements

IMAGE
PRINT[#] USING
SCALE

Handling-Error Statements

OFF ERR
ON ERR
NOT RACE
RESUME
TRACE

Identifiers

Ampersand
Dollar
Percent

Input Statements

DATA
GET
INPUT
READ
RESTORE

Logical Operators

AND
NOT
OR

Loop Statements

FOR
NEXT
STEP
TO

Relational Operators

Equal To
Greater Than
Greater Than or Equal To
Less Than
Less Than or Equal To
Not Equal To

Remark Statement

REM

Reserved Variables

EOF
ERR
ERRLIN
FRE

142

HPOS
INDENT
KBD
OUTREC
PREFIX$
VPOS

Screen Statements

DEL
HOME
INVERSE
LIST
NORMAL
PRINT
SPC
TAB
WINDOW

String and String-Related
Functions

ASC
CHR$
Concatenation
HEX$
INSTR
LEFT$
LEN
MID$
RIGHT$
STR$
SUB$
TEN
VAL

System and Utility Statements

CHAIN
CLEAR
CONT
END
LOAD

System and Utility Statements
(continued}

NEW
RUN
SAVE
STOP

Trigonometric Functions

ATN
cos
SIN
TAN

Type Conversion Functions

CONV
CONV%
CONV&
CONV$

Unconditional Branching
Statements

GOSUB
GOTO
POP
RETURN

User-Defined Function

DEF FN

143

	BASIC Keywords for the Apple ///

	Contents

	Foreword

	Preface

	Syntax Notation

	BASIC Keywords for the Apple III

	Index of Symbols

	Index of Keywords by Function

